Application

Management

Los Del DGIIM, 1osdeldgiim.github.io

Doble Grado en Ingenieria Informatica y Matematicas

LI\ areida A& AaBE vanada

https://losdeldgiim.github.io/

Esta obra estd bajo una Licencia Creative Commons
Atribucion-NoComercial-SinDerivadas 4.0 Internacional
(CC BY-NC-ND 4.0).

Eres libre de compartir y redistribuir el contenido de esta
obra en cualquier medio o formato, siempre y cuando des
el crédito adecuado a los autores originales y no persigas
fines comerciales.

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

Application
Management

Los Del DGIIM, losdeldgiim.github.io

Arturo Olivares Martos

Granada, 2025

https://losdeldgiim.github.io/

App. Management

2 losdeldgiim.github.io

https://losdeldgiim.github.io/

Indice general

1. Application Lifecycle Management (ALM)

1.1. Application Lifecycle Management (ALM)
1.2. Software Development Lifecycle (SDLC)
1.2.1. Waterfall Model
1.2.2. Agile Model
1.3. SLA . . .
. Version Control System (VCS)
2.1. Typesof VCS o o
2.2, Git
22.1. GitBisect
222 GitLSEF
2.2.3. Branching oo
2.2.4. Branch Integration
225, GitHooks
2.3. Distributed Git
2.3.1. Remote Repositories,
2.3.2. Collaboration Workflows
24. GitInternals.
24.1. Objects
2.4.2. Git Filesystem-Check L.
. Build Engineering und Continuous Integration
3.1. Build Engineering
3.1.1. GitHub Actions
3.2. Continuous Integration (CI)
3.2.1. Cland Branches
3.22. Testingo
. Deployment Strategies and DevOps
4.1. Deployment Strategies
4.1.1. Non-Zero Downtime Releases
4.1.2. Zero-Downtime Releases
4.1.3. Emergency fixes oL
4.2. Deployment Pipeline
4.2.1. Guidelines for a Deployment Pipeline
4.2.2. Phases of a Deployment Pipeline
4.2.3. Deployment of User-Installed Software

3

App. Management Indice general

4.2.4. Modern Deployment Practices 31

4.3. Continuous Deployment (CD) 32
4.3.1. Continuous Delivery 32

4.4. DevOps 33
4.4.1. RACI Method 34

4.5. Deployment with Containers Technology 34
4.5.1. Containers VS Virtual Machines 34
4.5.2. Isolation Measures, 34
4.5.3. Docker 36

5. Secure Deployment and CA Case Study 39
5.1. Binary Provenance 40
5.2. Certificate Authorities (CA) 40
52.1. CA Creation. 41

5.3. Human Factors in Secure Deployment 41
5.3.1. Vulnerability Management 42
5.3.2. Security Champion L. 44

6. Software Testing 47
6.1. Test Types. o . 47
6.1.1. Unit Testso A7
6.1.2. Acceptance Tests 48

6.2. Program Analysis 48
6.2.1. Adress Sanitizer Lo 48

6.3. The Quest for Coverage 49
6.3.1. Symbolic Execution 49
6.3.2. Fuzzing 50

7. I"Jbungen 53
7.1. Application Lifecycle Management (ALM) 53
7.2. Version Control System (VCS) 54
7.3. Distributed Git und Internals 57
7.4. Continuous Integration oL 64
7.5. Docker 68
7.6. Deployment 72
7.7. Secure Deployment 74
7.8. Secure Deployment 2 oL 75
7.9. Secure Development 76
7.10. Fuzzing & Z3 7
T11. Fuzzing & Z3 2 80
TA2.SLA . o e 87

4 losdeldgiim.github.io

https://losdeldgiim.github.io/

1. Application Lifecycle
Management (ALM)

1.1. Application Lifecycle Management (ALM)

Creating an Application is not just installing it and updating it, it should cover
much more aspects throughout its whole lifecycle, from the initial idea to its end of
life. With that in mind, we define the following.

Definicién 1.1 (Application Lifecycle Management (ALM)). ALM is the framework
that defines the process of managing an Application throughout its whole lifecycle,
from the initial idea to its end of life. It integrates people, processes and tools to
manage the application effectively and efficiently.

This framework lets manage the complexity of modern applications. Nowadays
there are a lot of different people involved in the creation and maintenance of an
Application (Developers, Bussiness Analysts, Testers, Final Users, etc). ALM pro-
vides a structured approach to coordinate all these people and their tasks. This
lets everyone know what should they do at any moment. This leads to overcome the
typical “controled chaos” that usually happens in large projects.

Some aspects that are usually included in ALM are:

Design & Development

Continuous Integration

Source Control & Configuration Management

Quality Assurance
» Requirement Management

Its main goals are the following ones:

Create fast high-quality products.

Definition of tasks, roles and responsibilities.

Knowing which tasks are being done, by whom and when.

It improves the communication between teams.

3

App. Management 1. Application Lifecycle Management (ALM)

It takes into account one big problem: too much planning can have negative con-
sequences. If every single detail is planned, it can lead to a lack of flexibility and
adaptability to changes. Therefore, when new changes are planned, they are usually
not taken into account, leading to a worse final product.

In addition, the first, difficult step in ALM is to define the requirements of the
Application. It should be taken into account that many organizations are in a hurry
to develop and release the Application in order to be competitive in the market.
With that in mind, a minimum set of requirements that gives them the competitve
advantage should be defined. This firsy prototype should be developped and released
as soon as possible. After that, new features can be added in future versions of the
Application.

1.2. Software Development Lifecycle (SDLC)

The Software Development Lifecycle (SDLC) is a methodology that defines the
process of creating and maintaining software applications. It is a structured ap-
proach that covers all the phases of the software development process, from the
initial idea to its end of life. It defines some guidelines and best practices to reduce
future problems. It also helps to decide the responsibilities of each team member,
so that everyone knows what they should do at any moment.

It should not be confused with the following concepts:

VS ALM : SDLC is a part of ALM. While ALM covers the whole lifecycle of an
Application, SDLC focuses on the development phase.

VS System Development Lifecycle : System Development Lifecycle also takes
into account testing and using softwares from third parties. It is really im-
portant to not blindly trust third-party softwares, as they can have security
vulnerabilities or other problems that can affect the final product. There are
ISO standards for Software and System Development Lifecycles.

The following subsections describe some concretes SDLC models. The number
of phases of the SDLC can vary depending on the model used. Regarding docu-
mentation (which is usually not included into the phases), it is often overlooked
(functional software is more important than comprehensive documentation), but it
should ideally be complete.

1.2.1. Waterfall Model

The Waterfall Model is a linear and sequential approach to software development.
It is the one that has been historically used the most.

Advantages It is easy to understand and manage. The phases do not overlap.

Disadvantages [t is inflexible to changes. Once a phase is completed, it is difficult
to go back to it. In addition, a working product is not available until the end
of the process.

6 losdeldgiim.github.io

https://losdeldgiim.github.io/

App. Management 1. Application Lifecycle Management (ALM)

It should only be used when the requirements are well understood and unlikely
to change during the development process. It is not suitable for complex or large
projects where requirements may evolve over time.

Phases

1.

Requirements & Analysis What should the System do?

A good requirements list is essential for the success of the project. Test cases
should be defined at this stage to ensure that the final product meets the requi-
rements. They should be relevant, valid and verifiable. They are divided into
Functional Requirements (what the system should do) and Non-Functional Re-
quirements (how the system should be, e.g., performance, security, usability,
etc).

. Design & Architecture How should the System be designed? Online/Offline,

etc.

The system architecture is defined at this stage. It should let the require-
ments be implemented effectively and efficiently. One important aspect is the
scalability of the system to a higher number of users or data.

. Implementation & Coding How is the System going to be coded?

The actual coding of the system is done at this stage. It should be taken into
account that the knowledge of the different stakeholders can vary a lot.

. Testing & Quality Assurance Does the System meet the requirements?

Testing is so important that it should be done in parallel with the coding
(Test-Driven Development and Continuous Integration). The final tests are
usually done by a different team (QA Team) to ensure the objectivity of the
tests. In really critical systems, formal verification techniques can be used to
mathematically prove that the system meets its requirements.

. Deployment & Maintenance How do the deployment and updates work?

The system is deployed. Two aspects should be taken into account:

= Continuous Deployment: The changes in the code should be automatically
considered. Automatic tests should be done to ensure that the new code
does not introduce new bugs.

= Maintenance: A balance between new versions and bug fixing the current
version should be found. Releasing new updates can be difficult depending
on the type of Application.

1.2.2. Agile Model

Scrum

Scrum is an Agile iterative and incremental framework for managing software
development projects. There are three main roles:

7 losdeldgiim.github.io

https://losdeldgiim.github.io/

App. Management 1. Application Lifecycle Management (ALM)

1. Product Owner: Responsible for defining the product vision (client represen-
tative).

2. Scrum Master: Responsible for ensuring that the Scrum process is followed.
3. Development Team: Responsible for delivering the product increment.

The development process is divided into Sprints (usually 2-4 weeks long). Each
Sprint has 4 main events:

1. Sprint Planning: Define the goals and tasks for the Sprint.

2. Daily Scrum: A short daily meeting to discuss progress and obstacles.

3. Sprint Review: Review the work completed and the work not completed.

4. Sprint Retrospective: Reflect on the past Sprint and identify improvements.
The main tools (artifacts) used in Scrum are:

= Product Backlog: List of all desired work on the project.

= Sprint Backlog: List of tasks to be completed in the current Sprint.

= Increment: The sum of all the completed products.

DevOps

DevOps is a set of practices that combines software development (Dev) and IT
operations (Ops). Its main goal is to shorten the development lifecycle and provide
continuous delivery with high software quality. It emphasizes collaboration, commu-
nication, and integration between development and operations teams.

Agile ALM

The agile ALM is a flexible and iterative SDLC approach that focuses on delive-
ring value to the customer through continuous feedback and improvement. It follows
the principles of Agile development.

Individuals and interactions > Processes and tools
Working software > Comprehensive documentation
Customer collaboration > Contract negotiation
Responding to change > Following a plan

The principles of Agile ALM are:

1. Satisfy the customer through early and continuous delivery of valuable soft-
ware.

2. Welcome changing requirements, even late in development.

3. Deliver working software frequently.

8 losdeldgiim.github.io

https://losdeldgiim.github.io/

App. Management 1. Application Lifecycle Management (ALM)

4. Business people and developers must work together daily throughout the pro-
ject.

5. Build projects around motivated individuals.

6. The most efficient method of conveying information is face-to-face conversa-
tion.

7. Working software is the primary measure of progress.

8. Agile processes promote sustainable development. Everyone should maintain
a constant pace indefinitely.

9. Continuous attention to technical excellence and good design enhances agility.
10. Simplicity—the art of maximizing the amount of work not done-is essential.

11. The best architectures, requirements, and designs emerge from self-organizing
teams.

12. At regular intervals, the team reflects on how to become more effective, then
tunes and adjusts its behavior accordingly.

1.3. SLA

A Service Level Agreement (SLA) is a formal contract between a service provider
and a customer that defines the level of service expected from the service provider.
Some important metrics that are usually included in an SLA are:

= Operating Time: The time period during which the client has the right to use
the service.

= Service Time: The time period during which the service provider is obligated
work on resolving issues.

= Response Time: Maximum time for the service provider to start working on
an issue after it has been reported®.

» Recovery/Resolution Time: Maximum time for the service provider to resolve
an issue after it has been reported.

= Availability: The percentage of time the service is available during the Opera-
ting Time?.

Total Minutes in Operating Time — Minutes of Downtime

Availability = x 100 %

Total Minutes in Operating Time

1Tt should be noted that the period starts when the issue is reported only if it is during the
Service Time; otherwise, it starts at the beginning of the next Service Time.

2Tt should be noted that the service can be unavailable during scheduled maintenances, which
should be defined in the SLA.

9 losdeldgiim.github.io

https://losdeldgiim.github.io/

App. Management 1. Application Lifecycle Management (ALM)

There are 6 different availability levels commonly used, from VK 0 (less restric-
tive) to VK 5 (most restrictive). Each level defines the minimum availability
percentage and the maximum allowed downtime per year.

» Regarding to failures, there are different metris that can be included in the
SLA, such as:

e Mean Time Between Failures (MTBF): The average time between two
consecutive failures.

e Mean Time To Repair (MTTR): The average time it takes to repair a
failure.

e Mean Time To Failure (MTTF): The average time until the first failure
occurs.

It is mostly used for systems that cannot be repaired (e.g., a light bulb)
or that are not usually repaired (e.g., a hard drive), but replaced instead.

10 losdeldgiim.github.io

https://losdeldgiim.github.io/

2. Version Control System (VCS)

Definicién 2.1 (Version Control System (VCS)). A Version Control System (VCS)
is a software tool that helps to manage changes to source code over time. It keeps
track of every modification made to the code, also allowing to revert to previous
versions if needed.

2.1. Types of VCS

There are three main types of VCS:

= Local VCS: It stores all the changes in a local database on the developer’s
computer. It is simple to use, but it does not provide collaboration features.
One example is GNU RCS (Revision Control System).

» Centralized VCS: It uses a central server to store all the changes. Follows a
client-server architecture.

Advantages Clear control access, correct backup of big files and locking me-
chanism.

Disadvantages Single point of failure, limited offline capabilities and the
possibility of forgetting to release the locks.

Only the original file and then each specific changes (deltas) are stored, not
every version of the file. This saves space but depends on the whole set of
deltas to reconstruct a specific version. One example is Subversion (SVN).

» Distributed VCS: It allows every developer to have a complete copy (inclu-
ding history) of the repository on their local machine. This provides better
collaboration features and allows developers to work offline.

In the following section, we will focus on Distributed VCS, and specially on one
of the most popular ones: Git.

2.2. Git

Git is a distributed version control system that is widely used in the software
development industry. Opposite to the delta-based approach of the centralized VCS,
Git uses a snapshot-based approach. It keeps a list of the whole snapshots of the
filesystem at specific points in time. Almost every operation in Git is performed
locally, which makes it really fast. Given that the history is stored locally, it allows

11

App. Management 2. Version Control System (VCS)

to work and to restore previous versions even when offline. It uses Hashing (SHA-1)
to identify every single commit, ensuring the integrity of the codebase.

Git has some diffeent states for each file, which are stored in three different areas:

» Modified (Stored in the working directory): The file has been changed but not
yet staged for commit (not registered in the repository).

» Staged (Stored in the staging area): The file has been modified and is marked
to be included in the next commit.

» Committed (Stored in the local repository, .git folder): The file has been
saved in the local repository.

Some important Git commands are the following ones:
» git init: Initializes a new Git repository (creates the .git folder).

» git clone <repo_url>: Clones an existing repository from a remote server
to the local machine.

» git add <file>: Stages a file for commit. It also lets tracking new files and
indicating when a file conflict has been resolved.

Using the option -A stages all the changes (new, modified and deleted files).

= git commit -m "message": Commits the staged changes to the local reposi-
tory with a descriptive message.

e git commit --amend: It modifies the last commit by adding the cu-
rrently staged changes to it. It is useful when you forget to stage some
changes before committing, or when you want to fix a mistake in the last
commit (e.g., a typo in the code, a missing file, etc). It should be noted
that the hash of the last commit will change after amending it. It should
be used with the option —-no-edit if you want to keep the same commit
message, or with the option -m "new message" if you want to change
the commit message.

= git status: Shows the current status of the working directory and staging
area. Indicates which files are untracked, modified, deleted or staged for com-
mit.
Observacion. All the files that are not tracked will always appear in red when
using git status. Sometimes they are intended to be untracked (e.g., tem-
porary files, build artifacts, etc). In that case, they can be added to the
.gitignore file to avoid them appearing in the status. That will make Git
ignore them.

» git diff: Shows the differences between files in different states (working di-
rectory, staging area, last commit). Has different options to compare specific
states:

e git diff: Working directory vs Staging area.

12 losdeldgiim.github.io

https://losdeldgiim.github.io/

App. Management 2. Version Control System (VCS)

e git diff --staged: Staging area vs Last commit.

e git diff HEAD: Working directory vs Last commit.

= git log: Displays the commit history of the repository. Using the option -p
shows the differences introduced in each commit.

» git checkout <commit_hash>: Switches to a specific commit, allowing to
view the state of the repository at that point in time.

In addition, when referencing a commit, Git allows to use some special notations:

» <commit_hash>"[<n>] : Refers to the n-th parent of the specified commit (for
instance, when merging, more than a parent may appear). If n is not provided,
it defaults to 1, referring to the first parent.

s <commit_hash>~[<n>] : Refers to the n-th ancestor of the specified commit.
It follows the first parent of each commit, so it is useful to refer to commits in
a linear history. If n is not provided, it defaults to 1, referring to the immediate
parent.

2.2.1. Git Bisect

In this section, we introduce a new command, git bisect, which is used to
find the specific commit that introduced a bug or issue in the codebase. A whole
section is needed, as it is a really useful command that can save a lot of time when
debugging. It uses a binary search algorithm (O(logn)) to efficiently narrow down
the range of commits that may have introduced the bug. The workflow for using
git bisect is as follows:

1. Initialize the bisect process.

1.1 git bisect start: Initializes the bisect process.

1.2 git bisect bad: Marks the current commit as bad (the commit where
the bug is present).

1.3 git bisect good <commit_hash>: Marks a specific commit as good (a
commit where the bug is not present).

2. Locate the commit that introduced the bug.

a) Git will automatically check out a commit in the middle of the range
between the good and bad commits. The developer needs to test this
commit to determine if it is good or bad.

b) Based on the test result, the developer will mark the commit:

= git bisect good: If the commit is good, it will narrow down the
search to the range between this commit and the bad commit.

= git bisect bad: If the commit is bad, it will narrow down the search
to the range between this commit and the good commit.

c¢) This process is repeated until Git identifies the specific commit that in-
troduced the bug.

13 losdeldgiim.github.io

https://losdeldgiim.github.io/

App. Management 2. Version Control System (VCS)

During the whole process, the following command are useful:

» git bisect log: Shows the log of the bisect process, including the com-
mits that have been marked as good or bad.

= git bisect visualize --oneline: Visualizes the bisect process, sho-
wing the commits that are still not tested, and where the HEAD is currently
located.

3. End the bisect process.

» git bisect reset: After finding the bad commit, this command is used
to end the bisect process and return to the original state of the repository
(the branch and commit that were checked out before starting the bisect).
It is important to use this command to clean up the bisect state and avoid
any confusion in future operations.

» git bisect run <script>: This command automates the bisecting pro-
cess by running a specified script that tests each commit. The script
should return a zero exit code if the commit is good and a non-zero exit
code (normally 1) if the commit is bad. This allows to quickly identify
the bad commit without manual intervention.

This command is used in the Exercise 7.4.1, so we refer to that exercise for a
practical example of how to use git bisect.

2.2.2. Git LSF

Git Large File Storage (Git LFS) is an extension for Git that is designed to hand-
le large files more efficiently. Given that Git is based on snapshots, storing large files
directly in the repository can lead to repeated storage of the same file in different
commits, which can quickly bloat the repository size. Git LFS solves this problem
by replacing large files with lightweight references in the Git repository. Instead of
storing the actual file content in the repository, Git LF'S stores a pointer to the file
in the Git repository and keeps the actual file content in a separate storage loca-
tion. It is especially useful for binary files (e.g., images, videos, audio files, pptx, etc).

Some important Git LFS commands are the following ones:
» git 1fs install: Installs Git LFS in the local repository.

» git 1fs track "<file_pattern>": Tracks files matching the specified pat-
tern with Git LFS.

» git 1fs ls-files: Lists the files that are being tracked by Git LFS.

2.2.3. Branching

Branching is a powerful feature in Git that allows developers to create separate
lines of development within a repository. This enables multiple developers to work on
different features or bug fixes simultaneously without interfering with each other’s

14 losdeldgiim.github.io

https://losdeldgiim.github.io/

App. Management 2. Version Control System (VCS)

work. Each branch represents an independent line of development, allowing changes
to be made in isolation. Once the changes in a branch are complete and tested, they
can be merged back into the main branch (usually called main or master).

In order to explain branching, we need to define the concept of HEAD.

Definicién 2.2 (HEAD Pointer). The HEAD pointer is a reference to the current
commit that the working directory is based on (therefore, it allows modifiers such as
HEAD" or HEAD™). It indicates the current position in the repository’s history. Some
important aspects about the HEAD pointer are the following ones:

= @ alone is a shorthand for HEAD, so it can be used interchangeably.

= HEAD@{n} refers to the position of HEAD n moves ago. For instance, HEAD@{1}
refers to the previous position of HEAD before the last change (e.g., before the
last checkout, merge, rebase, etc).

Some important commands related to branching are the following ones:

» git branch <branch_name>: Creates a new branch with the specified name
that points to the current commit. With the option -d, it deletes the specified
branch (if it has been merged).

» git checkout <branch_name>: Switches to the specified branch, updating the
working directory to reflect the state of that branch. It then also updates the
HEAD pointer to point to the new branch (the latest commit of that branch).
With the option -b, it creates a new branch and switches to it in a single
command.

As explained with the HEAD pointer, the names of branches are just pointers to
specific commits (the latest commit of that branch). Therefore, modifiers such as
<branch_name>" or <branch_name>~ can be used to refer to commits in the history
of that branch. <branch_name>@{n} can also be used to refer to the position of the
branch pointer n moves ago.

2.2.4. Branch Integration

When the development in a branch is complete, it is often necessary to integrate
the changes back into another branch (usually the main or master branch). There
are two main methods for integrating branches in Git: merging and rebasing.

Observacion. Given that understanding how the git tree will be after the integration
is difficult, this tool can be used to visualize the effects of merging and rebasing.

Merging
The main command is the following one:

» git merge <branch_name>: Merges the specified branch into the current branch.
It combines the changes from both branches, creating a new commit that re-
presents the merged state.

15 losdeldgiim.github.io

https://git-school.github.io/visualizing-git/
https://losdeldgiim.github.io/

App. Management 2. Version Control System (VCS)

There are two main strategies for merging branches:

» Fast-Forward Merge: If the current branch has not diverged from the branch
being merged, Git simply moves the HEAD pointer forward to the latest commit
of the merged branch. No new commit is created in this case.

» Recursive Merge: If the branches have diverged, Git creates a new commit that
combines the changes from both branches. This new commit has two parent
commits: one from each branch.

In the latter strategy, conflicts may arise if the same lines of code have been
modified in both branches. Git will mark these conflicts in the affected files, and it is
the developer’s responsibility to resolve them manually before completing the merge.
They can use git status to see which files have conflicts and need to be resolved.
After resolving the conflicts, the developer can stage the changes and complete the
merge by committing the changes.

Rebasing
This strategy uses the following command:

» git rebase <branch_name>: Reapplies the commits from the current branch
on top of the specified branch. It effectively moves the entire branch to start
from the latest commit of the specified branch. With the option --continue,
it continues the rebase process after resolving conflicts.

After rebasing, the commit history appears linear, and therefore a simple fast-
forward merge can be performed to integrate the changes into the target branch.

When rebasing, the commit history is rewritten, which can make it appear cleaner
and more linear. However, the details about the mistakes committed during the
development in the feature branch may be lost. In addition, it is dangerous to rebase
branches that have already been pushed to a remote repository, as it can lead to
confusion and conflicts for other developers working on the same branch, as their
local copies will have a different history than the rebased branch.

2.2.5. Git Hooks

Git hooks are scripts that are automatically executed by Git before or after
certain events, such as committing changes, merging branches, or pushing to a re-
mote repository. They allow developers to customize and automate various aspects
of their Git workflow. Git hooks are stored in the .git/hooks directory of a Git
repository. Each hook is a separate script file that corresponds to a specific event.
Some common Git hooks include:

= pre-commit: Executed before a commit is created. It can be used to perform
checks on the code (e.g., run tests, check code style, etc) and prevent the
commit if any issues are found.

= post-commit: Executed after a commit is created. It can be used to send no-
tifications, update documentation, or trigger other actions.

16 losdeldgiim.github.io

https://losdeldgiim.github.io/

App. Management 2. Version Control System (VCS)

= pre-push: Executed before changes are pushed to a remote repository. It can
be used to run tests or perform other checks to ensure that the code being
pushed meets certain criteria.

As a useful aspect, if any of the scripts ends with a non-zero exit code (denoting an
error), if it was a pre- hook, the action that triggered the hook will be aborted. It
garantees that certain conditions are met before proceeding with the action.

2.3. Distributed Git

Until this point, we have only talked about local operations. To collaborate with
other developers, it is necessary to use remote repositories.

2.3.1. Remote Repositories

A remote repository is a version of the repository that is hosted on a remote server
(GitHub, GitLab, Bitbucket, etc.). It allows multiple developers to collaborate on the
same codebase. All developers should synchronize their local repositories with the
remote repository to share changes and keep their code up to date. When more than
one developer is working on the same codebase, conflicts may arise if two developers
modify the same lines of code in different ways. Some important commands to
interact with remote repositories are the following ones:

» git remote add <name> <url>: Adds a new remote repository with a specific
name (e.g., origin).

» git push <remote> <branch>: Pushes the local commits to the specified re-
mote repository and branch.

» git fetch <remote>: Fetches the latest changes from the specified remote
repository without merging them into the local branch.

» git pull <remote> <branch>: Fetches and merges changes from the specified
remote repository and branch into the local branch.

2.3.2. Collaboration Workflows

There are different collaboration workflows that teams can follow when using
Git, depending on their preferences and project requirements. In the following, we
describe three common workflows.

Centralized Workflow

The repository has a single central shared repository. All developers clone this
repository, make changes in their local copies, and then push their changes back
to the central repository. When more than one developer changes the same lines
of code, conflicts may arise during the push operation, which need to be resolved
before the changes can be successfully pushed.

This workflow is simple and easy to understand, making it suitable for small teams
or projects with straightforward collaboration needs.

17 losdeldgiim.github.io

https://losdeldgiim.github.io/

App. Management 2. Version Control System (VCS)

Integration Manager Workflow

In this workflow, there are two types of developers:

= Integration Manager: He is the responsible and manteiner of the project.

» Contributors: They suggest the integration managers the changes they want

to make to the codebase.

As well as the two types of developers, there are also two types of repositories:

= Blessed Repository: It is maintained by the integration manager. It is the main

repository where all the changes are eventually integrated, and it is considered
the authoritative source of the codebase.

Developper Repositories: They are maintained by the contributors. Each con-
tributor has their own repository where they can make changes and experiment
with new features. Each developper has their public repository and its local

CopYy.

The workflow works as follows:

1.
2.

The integration manager creates the blessed repository, and make it public.

Each contributor clones the blessed repository to create their own developper
repository (that is, a fork of the blessed repository).

Contributors make changes in their local copies and push them to their deve-
lopper repositories.

. When a contributor wants to suggest changes to the blessed repository, they

email the integration manager asking him to make those changes (this is ty-
pically done through a pull request).

. The integration manager adds the contributor’s repository as a remote, fetches

the changes, reviews them, and if everything is fine, merges them into their
local blessed repository.

. Finally, the integration manager pushes the updated blessed repository to the

remote server, so that all contributors can access the latest changes.

This workflow allows for better control and review of changes, as the integration
manager can carefully evaluate each contribution before integrating it into the main
codebase. It is suitable for larger projects with multiple contributors.

Dictator and Lieutenants Workflow

This workflow is similar to the Integration Manager Workflow, but with a hie-
rarchical structure. In this case, a new upper role is introduced: there are more than
one integration managers, called lieutenants, and they report to a single dictator
(the main integration manager). Each lieutenant is responsible for a specific area of
the codebase and manages contributions related to that area.

The workflow works as follows:

18 losdeldgiim.github.io

https://losdeldgiim.github.io/

App. Management 2. Version Control System (VCS)

1. Each contributor works on their own branch created for their feature or bug
fix.

2. When needed, the lieutenants merge the branches of the contributors into their
own master’s branches.

3. When needed, the dictator merges the master’s branches of the lieutenants
into his own master’s branch.

4. Finally, the dictator pushes the updated blessed repository to the remote ser-
ver, so that all contributors can access the latest changes.

This workflow allows for better organization and management of contributions,
as each lieutenant can focus on their specific area of expertise. It is suitable for
large projects with multiple teams working on different aspects of the codebase. For
instance, the Linux kernel development follows this workflow.

2.4. Git Internals

Git is built around a few fundamental concepts that enable its powerful version
control capabilities. Understanding these concepts can help developers use Git more
effectively and troubleshoot issues when they arise.

2.4.1. Objects

Git stores all its data in a simple key-value database, where the key is a SHA-1
hash of the content, and the value is the actual content. There are four main types
of objects in Git:

= Blob: It represents the content of a file. It does not contain any metadata (e.g.,
filename, permissions, etc).

» Tree: It represents a directory. It contains references to blobs (files) and other
trees (subdirectories), along with their names and permissions.

= Commit: It represents a snapshot of the repository at a specific point in time.
It contains:

e A reference to a tree object that represents the state of the repository at
that commit (the root tree).

e References to parent commit(s) (the previous commit(s) in the history).

e Metadata such as the author, committer, timestamp, and commit mes-
sage.

All of the objects are stored in the .git/objects directory. There, you can find
subdirectories named with the first two characters of the SHA-1 hash, and inside
those subdirectories, you can find files named with the remaining 38 characters of
the hash. Git uses a combination of compression and delta encoding to store these
objects efficiently, minimizing disk space usage. To see the objects stored in a Git
repository, some useful commands are:

19 losdeldgiim.github.io

https://losdeldgiim.github.io/

App.

Management 2. Version Control System (VCS)

git cat-file -t <object_hash>: Displays the type of the specified object
(blob, tree, commit, etc).

git cat-file -p <object_hash>: Displays the content of the specified ob-
ject.

git ls-tree <tree_hash>: Lists the contents of the specified tree object.

git show <commit_hash>: Displays the details of the specified commit, inclu-
ding the commit message, author, date, and the changes introduced in that
commit.

In all the cases, the <object_hash> is the SHA-1 hash of the object you want
to inspect. Normally the first few characters of the hash are enough to uniquely
identify the object.

2.4.2. Git Filesystem-Check

In the following section, a new command is presented, git fsck, which is used
to verify the integrity of the Git repository. It checks the connectivity and validity
of the objects in the repository, ensuring that there are no corrupted or missing
objects. An important option is the following:

git fsck --lost-found: Sometimes, files may be accidentally deleted or be-
come unreachable due to various reasons (e.g., a commit is removed, a branch
is deleted, etc). However, if those files were sometime staged, they are not
completely lost, as their blob is still located in the .git/objects directory.
However, detecting them can be difficult (there may be many objects in that
folder).

This option allows to find those lost objects and recover them. It creates
two new directories, .git/lost-found/commit and .git/lost-found/other,
where it places the lost commits and other objects (e.g., blobs), respectively.
The files in those directories are named with their SHA-1 hash, and they can
be inspected using the commands described in the previous section.

20 losdeldgiim.github.io

https://losdeldgiim.github.io/

3. Build Engineering und
Continuous Integration

The main aim of this chapter is to introduce the concept of Continuous Inte-
gration (CI) and its significance in modern software development. However, before
diving into CI, a good understanding of build engineering is essential, as it forms
the foundation for effective CI practices.

3.1. Build Engineering

Build engineering refers to the process of compiling source code into executable
programs. This process should ideally be automated to ensure consistency, efficiency,
and reliability. It is crucial in order to increase productivity and reduce human error
during the build process.

To start with the building process, engineering teams typically start from avai-
lable scripts (e.g., Ant, Maven, Make) that automate the build process. However,
these scripts often need to be adapted to support Quality Assurance (QA) and de-
ployment on production systems. This is where the role of a Build Engineer becomes
vital.

There are usually two types of methologies for build engineering;:

Using IDEs : Integrated Development Environments (IDEs) provide built-in tools
for building and managing projects. However, using them can lead to incon-
sistencies, as different developers may have different IDE configurations.

Command-Line Build : Command-line build is usually preferred in professio-
nal environments. It allows for greater control and automation, ensuring that
builds are consistent across different environments. It also lets the build scripts
be version-controlled alongside the source code.

One important aspect of build engineering is the security of the build process. In
order to ensure that the build process is secure, there are three concepts that need
to be taken into account:

= Automation: The build process should be fully automated to minimize hu-
man intervention and reduce the risk of errors. These scripts should also follow
the “Failing Fast” principle, which means that if an error occurs during the
build process, it should stop immediately and report the error.

21

App. Management 3. Build Engineering und Continuous Integration

= Secure Supply Chain: The build process should ensure that all dependen-
cies and components used in the build are secure and trustworthy. This in-
cludes verifying the integrity of third-party libraries and tools. Isolated build
environments (e.g., using containers) can help mitigate risks associated with
compromised dependencies.

= Secure Trusted Base: In the event of cyberattacks, it is crucial to accurately
identify the software that has been compromised. This includes knowing which
version of the software was deployed and whether it was deployed correctly.
Methods for achieving this include using version numbers, hash functions, and
creating a Manifest file that contains all configuration parameters.

3.1.1. GitHub Actions

In thuis building process, CI tools are used to automate the build and testing
of code changes. One popular CI tool is GitHub Actions, which allows develo-
pers to create custom workflows that are triggered by specific events in a GitHub
repository. In a repository, workflows are defined in YAML files located in the
.github/workflows/ directory. The triggers are specified using the on keyword,
and include events such as push, pull_request, etc. These workflows can include
various jobs, such as building the code, running tests, and deploying the application.
An example of a simple GitHub Actions workflow that builds and tests a C++ project
using CMake is shown in the Source Code 1.

It should be noted that GitHub Actions and Git Hooks are different concepts.
While Git Hooks are scripts that run locally in a developer’s machine before or after
certain Git events, GitHub Actions are workflows that run in the cloud on GitHub’s
servers in response to events in a GitHub repository. Git Hooks are not suitable for
CI/CD processes, as they are not shared among team members and cannot be easily
integrated with other tools and services.

3.2. Continuous Integration (CI)

The concept of Continuous Integration (CI) revolves around the idea of frequently
integrating code changes into a shared repository. During the normal development
process, this integration is not done frequently enough, leading to integration pro-
blems and conflicts when multiple developers work on the same codebase. The aim
is to continuously integrate code changes with every commit, ensuring that the code
is compilable and that the executable passes all tests.

In order to achieve CI, apart from the agreement among developers to follow this
practice, the following are required:

» A version control system (e.g., Git) to manage code changes and facilitate
collaboration among developers.

= An automated build script that compiles the code and runs tests.

» CI server (e.g., Jenkins, Bamboo) that monitors the version control system for
changes, triggers the build process, and stores the results.

22 losdeldgiim.github.io

https://losdeldgiim.github.io/

App. Management 3. Build Engineering und Continuous Integration

1 name: C++ CI
on: [push, pull_request]
jobs:
build:
5 runs—-on: ubuntu-latest
steps:
- uses: actions/checkout@v2
- name: Set up CMake
uses: jwlawson/actions-setup-cmake@vl
10 with:
cmake-version: '3.18.4'
- name: Build
run: |
mkdir build
15 cd build
cmake
cmake --build .
- name: Test
run: |
20 cd build
ctest ——output-on-failure

Codigo fuente 1: Example of a GitHub Actions workflow for building and testing a
C++ project using CMake.

23 losdeldgiim.github.io

https://losdeldgiim.github.io/

App. Management 3. Build Engineering und Continuous Integration

= An automated deployment of the software to a test environment.

A lot of the stakeholders in a software project benefit from CI, including de-
velopers (who get immediate feedback on their changes), QA teams (who can run
automated tests) and project managers (who can get stadistics on build health and
code quality).

For a good CI practice, really frequent commits are necessary. With CI, with
each commit, the code is integrated, built, and tested automatically'. This helps to
identify and fix integration issues early, reducing the risk of conflicts and bugs. A
good practice is to firstly pull the latest changes from the main branch, resolve any
conflicts locally, and then push the changes to the shared repository. In addition, the
changes should be small and with a low complexity, making it easier for the other
developers to solve the possible conflicts.

All this building process should be carried out in the “Build Farm”, which is
a dedicated environment for building and testing the software. It should be admi-
nistrated separately from the development environment to ensure consistency and
reliability. The build farm should also be scalable to handle multiple builds simul-
taneously, especially in large projects with many developers. If desired, developers
should also be allowed to build and test their changes locally to reduce the load on
the build farm and get faster feedback.

3.2.1. CI and Branches

CI and branching strategies do not fit well together, as branches are by nature
changes in the code that should not yet be integrated into the main codebase. In
order to mitigate this, the number of branches should be minimized and the changes
in the master branch should at least once a day be merged into the feature branches.
In addition, the lifetime of branches should be considered:

= Most branches should be short-lived, lasting only a few days to a week. This
minimizes the risk of conflicts and integration issues.

= However, sometimes long-lived branches are necessary, for example, when it
is not still clear which features will be included in the software release, and
one will be later merged into the main branch. It should be clear from the
beginning that late-binding always carries risks.

3.2.2. Testing

Without testing, CI can only ensure that the code compiles successfully. To
ensure that the code behaves as expected, automated tests should be included in
the CI process. Appart from specific types of tests (e.g. code quality tests, security
tests), there are three main types of tests that should be considered:

!This can mean an overload in the early stages. A possible solution is “Nightly Builds”, where
the build process is run once a day, usually at night.

24 losdeldgiim.github.io

https://losdeldgiim.github.io/

App. Management 3. Build Engineering und Continuous Integration

Unit Tests : These tests focus on small units of code, such as functions or methods,
to ensure they work correctly in isolation, and are usually from a developer’s
perspective. No database or external systems should be involved. The whole
application should not be started. Usually less than 10 minutes are required
to run all unit tests.

Component Tests : More than one unit is tested together, possibly involving da-
tabases or external systems. The whole application is still not started.

Acceptance Tests : These tests validate the entire application against the require-
ments, and are usually from an end-user’s perspective. The whole application
is started. Usually more than a day is required to run all acceptance tests.

The CI process should also consider the time all this testing takes. If it takes too
long, developers may have to wait too much time to get feedback on their changes,
or while the tests are running, they may continue working on other tasks, leading
to more integration issues later. A possible solution is to have a “Smoke Test Suite”
that runs a subset of the tests that can give quick feedback on the most critical
functionalities of the application, and only run the full test suite at specific times

(e.g., nightly).

25 losdeldgiim.github.io

https://losdeldgiim.github.io/

App. Management 3. Build Engineering und Continuous Integration

26 losdeldgiim.github.io

https://losdeldgiim.github.io/

4. Deployment Strategies and
DevOps

To deploy an application means to make it available for use. This process is criti-
cal, as it ensures that the application is accessible to users in a reliable and efficient
manner.

Afterwards we will explore the Deployment Pipeline, but first it should be con-
sidered the risky first deployment, because it has some particularities that will not
be present in the rest of deployments. As it has already been explained in previous
chapters, only a small prototype should be deployed at this stage, to show the basic
functionality of the application to the users. An I'T-environment should be prepared
for this deployment, being as similar as possible to the final production environment
(same operating system, same installed software, similar hardware, etc.). This will
help to identify potential issues that may arise during the deployment process.

As it was with the integration phase, automatization is key to ensure a smooth
and efficient deployment process. Every step should be scripted and with self-testing
capabilities, to minimize human errors and ensure consistency across deployments.
Documentation and verification that the deployment process is working as expected
is also crucial. Therefore, some aspects to avoid are:

= Manually performing deployment steps.
= Deploying only when the entire development is complete.

= Manual configuration management of production environments.

4.1. Deployment Strategies

There are different strategies for deploying applications, and the choice of stra-
tegy depends on various factors such as the size and complexity of the application,
the frequency of updates, and the tolerance for downtime. There are two important
metrics that should be taken into account:

= Down Time: The period during which the application is unavailable to users

due to deployment activities. It is important to minimize downtime to ensure
a good user experience and maintain service availability.

27

App. Management 4. Deployment Strategies and DevOps

= Rollback Time: The time it takes to revert to a previous stable version of the
application in case of issues during deployment. A fast rollback time is cru-
cial to minimize the impact of failures and ensure service continuity (disaster
planning).

It is important to firstly backup the status (database, data systems, etc.) that
the application has changed before rolling back, in order to avoid data loss.

The deployment strategies can be categorized based on their approach to down-
time during the deployment process.

4.1.1. Non-Zero Downtime Releases

In this strategy, the application is taken offline during the deployment process,
resulting in downtime for users.

Recreate Deployment

In this strategy, the existing version of the application is completely stopped and
removed before deploying the new version. This approach is simple and straightfor-
ward, but it results in downtime for users during the deployment process.

4.1.2. Zero-Downtime Releases

Zero-downtime releases, also known as Hot Deployment, should change instantly
between application versions without interrupting the service for users. Easyly chan-
ging the resources (Databases, Servers, etc.) that the application is using is key to
achieve this, which can be achieved by changing the URI (Uniform Resource Iden-
tifier) that the application is pointing to. Some strategies to achieve zero-downtime
releases are the following.

Ramped Deployment

The new version is gradually deployed in every server, one by one. The old version
is still running in the servers that have not been updated yet, and therefore there is
no downtime for users. Once the new version is deployed in a server, the old version
is stopped and removed from that server. This process continues until all servers are
updated to the new version.

Blue-Green Deployment

There are two versions of the application: the current production (green) and the
new version to be deployed (blue). These can be hosted on separate environments
(e.g., different servers or cloud instances) or in the same environment (e.g. two dif-
ferent processes running on the same server). Switching between versions is done by
simply switching in the router (in less than a second).

Problems can however be caused by databases, because the new version may
require a different database schema. To avoid this, during the migration the appli-

cation is set to read-only.

28 losdeldgiim.github.io

https://losdeldgiim.github.io/

App. Management 4. Deployment Strategies and DevOps

Canary Releasing

In this strategy, the new version of the application is rolled out to a small subset
of users (the canary group) while the majority of users continue to use the old
version. This allows for monitoring the performance and stability of the new version
in a real-world environment before fully deploying it to all users. If any issues are
detected, the deployment can be halted or rolled back without affecting the entire
user base. It also allows to gather information about the new version from real users
(e.g. if it generates more revenue).

A /B Testing

This strategy involves deploying two different versions of the application (version
A and version B) to different subsets of users. This allows for testing and comparing
the performance, user experience, and other metrics of the two versions in a real-
world environment. Based on the results, the better-performing version can be fully
deployed to all users. This strategy differs from canary releasing in the way the
users are selected, as in A/B testing the users are carefully selected (depending on
country, age, etc.) to ensure that the results are statistically significant, while in
canary releasing the users are randomly selected.

Shadow Deployment

The new version of the application is deployed alongside the old version, but it
does not receive any user traffic. Instead, it receives a copy of the user traffic that
the old version is receiving, allowing for testing and monitoring the new version
in a real-world environment without affecting users. This strategy allows to gather
information about the new version from real users, while minimizing risks.

4.1.3. Emergency fixes

Despite the amount of testing and precautions taken, it is possible that some bugs
or vulnerabilities are discovered after deployment. In such cases, the fixes should
also go through the deployment pipeline to ensure that they are properly tested and
validated before being released to production. This is usually not done, just fixing
the issue directly in production, but this can lead to:

» Introducing new bugs while fixing the issue, known as Regression Bugs.

= The system could be in an unknown state after the fix (e.g., inconsistent data),
as it was not tested or committed properly.

Therefore, having short deployment times is even more important. In addition, when
a bug is detected the severity of the issue should be evaluated, and rolling back to
a previous version should also be considered.

4.2. Deployment Pipeline

A Deployment Pipeline is an automated process that takes code changes from
development to production. Before analysing its phases, it is important to explain

29 losdeldgiim.github.io

https://losdeldgiim.github.io/

App. Management 4. Deployment Strategies and DevOps

some good practices that should be followed when implementing a deployment pi-
peline.

4.2.1. Guidelines for a Deployment Pipeline

Some guidelines to follow when implementing a deployment pipeline are the
following;:

1. Binary files should only be built once and then promoted through the different
stages of the pipeline (e.g., from testing to staging to production). They should

be secured with hashes.

2. The deployment process should be similar in every environment (development,
testing, staging, production).

3. Smoke-Tests which verify that the application, database, and external services
are running correctly should be performed after each deployment.

4. Testing environments should closely resemble the production environment.

5. Each code change should go through the entire pipeline to avoid regression
bugs.

6. If any phase in the pipeline fails, the entire process should stop and the team
should address the issue immediately.

4.2.2. Phases of a Deployment Pipeline

A typical deployment pipeline consists of the following phases:
1. Commit Stage.

2. Automated Acceptance Test Stage.

3. Manual Test Stage.

4. Release Stage.

Commit Stage

In this phase, where the code is builded and some automated tests are performed
(usually unit tests and some acceptance tests), the principles of Continuous Integra-
tion (CI) are applied. It should ideally last 5-10 minutes. This phase is crucial, and
its implementation leads to significant improvements in software quality and team
productivity.

30 losdeldgiim.github.io

https://losdeldgiim.github.io/

App. Management 4. Deployment Strategies and DevOps

Automated Acceptance Test Stage

The unit tests are usually not enough, and therefore more extensive automa-
ted acceptance tests should be performed in this phase. They should be described
without technical details or terms, but from the user’s perspective. They have an
specific structure:

» Given some initial context (the preconditions).
» When an event occurs (the user action).

» Then ensure some outcomes (the postconditions).

Manual Test Stage

Some tests cannot be automated, and therefore they should be performed ma-
nually in this phase. Examples of such tests are the following:

= Look & Feel Testing: Ensures that the application meets the desired aesthetic
and usability standards.

= Worst Case Testing: Evaluates the application’s performance and stability
under extreme conditions (e.g., for instance, the application is closed while
performing a critical operation).

Release Stage

In this final phase, the application is deployed to the production environment.
It should be as automated and as easy as possible, to minimize human errors and
ensure consistency across deployments. Monitoring and alerting mechanisms should
be in place to detect any issues that may arise after deployment.

4.2.3. Deployment of User-Installed Software

This process differs from the one described above, as the software is installed
and updated by the users themselves. Some important aspects to consider are the
following:

= Crash Reporting from the users should be implemented.
= Roll back should be also possible.

= Mantaining old versions is time-consuming, so ideally everyone should have
the same version. In order to achieve that, updates should be downloaded and
installed in the background automatically.

4.2.4. Modern Deployment Practices

In these last years, new practices have emerged to improve the deployment pro-
cess even further. Some of these practices are the following:

31 losdeldgiim.github.io

https://losdeldgiim.github.io/

App. Management 4. Deployment Strategies and DevOps

» Progressive Delivery: This practice involves gradually (1%, 5%, 25 %, 50 %,
100 %) rolling out new features to users, allowing for monitoring and feedback
at each stage before a full release. Canary Releasing and Blue-Green Deploy-
ment are combined, and the deployment is automatically paused or rolled back
according to the monitoring results.

» Feature Flags: This technique allows developers to enable or disable specific
features in an application without deploying new code. It allows dark launches
(where a feature is deployed but not yet visible to users) and A/B testing
(where different users see different versions of a feature to evaluate its perfor-
mance) while minimizing risks. The Flag debt (the accumulation of unused or
outdated feature flags) should be managed properly to avoid code complexity.
There are some variations:

e Release Flags: Used to control the release of new features.
e Kill Switches: Used to quickly disable a feature in case of issues.
e Permission Flags: Used to enable features for specific user groups.
e Experiment Flags: Used for A/B testing.
= GitOps: This practice is based on the fact that the entire system’s desired
state is stored in a Git repository (Git is the single source of truth). Instead

of deploying (manually or automatically) the application, the server directly
pulls the changes from the Git repository and deployes them.

= Monitory and Observability: Appart from the typical monitoring (tracking
predefined metrics as CPU, RAM, etc.), observability focuses on understanding
the internal state of the system based on the data it produces (logs, metrics,
traces). This allows not only to understand that an error has occurred, but
also why it has occurred and, hopefully, how to fix it.

4.3. Continuous Deployment (CD)

Continuous Deployment (CD) is a software development practice that let’s the
software to be constantly deployed to production automatically, without human in-
tervention. In order to achieve CD, CI is required, and a robust deployment pipeline
with extensive automated testing is essential to ensure that only high-quality code
reaches production. As happened with CI, CD prefers the changes to be small and
incremental, as they are easier to test and deploy.

Some of its benefits include an increased reliability, fast deployment times and
major competitiveness, as time is usually a critical factor in the software industry.

4.3.1. Continuous Delivery

Although CD is useful, it focuses on deploying every change to production, which
may not be suitable or desired in all scenarios. Therefore, Continuous Delivery is
often preferred, where software sould always be in a deployable state, but the actual

32 losdeldgiim.github.io

https://losdeldgiim.github.io/

App. Management 4. Deployment Strategies and DevOps

deployment to production is a manual decision. This allows for more control over
when and how changes are released, allowing Feature Toggles to be used to enable
or disable features as needed.

Observacion. Both CD and Continuous Delivery focus on automating the deploy-
ment process on the production environment, while CI focuses on automating the
build and testing processes in the earlier stages of development, in a test environ-
ment.

4.4. DevOps

DevOps is a set of practices that combines software development (Dev) and IT
operations (Ops) to shorten the development lifecycle and provide continuous deli-
very with high software quality. It aims to improve collaboration and communication
between development and operations teams®.

This approach is needed, because both teams have different goals and viewpoints.

= Development Team: Focuses on delivering new features and updates quickly
to meet user needs and stay competitive in the market.

= Operations Team: Prioritizes system stability, reliability, security...
DevOps practices are based on the following principles:

» Two Pizza Theory: Teams should be small enough to be fed with two pizzas
(8-10 people), to enhance communication and collaboration. This is not always
possible, and it should also be taken into account that too many small teams
can lead to coordination issues.

» Experts Silos are eliminated: Instead of having separate teams for de-
velopment, testing, deployment, and operations, cross-functional teams are
formed where members have diverse skills and responsibilities. This promotes
collaboration and shared ownership of the entire software lifecycle. This way,
bottlenecks caused by waiting for expert teams to perform specific tasks are
avoided.

= Avoiding Volleyball Games: In traditional development processes, tasks
are often passed between the development and operations teams, blaming each
other for issues. In DevOps, the focus is on collaboration and shared respon-
sibility, avoiding this back-and-forth blaming.

= Employees are trusted and empowered: Team members are given the
autonomy to make decisions and take ownership of their work, not having to
ask for permission for every little change and avoiding delays.

IThis is usually used to justify bad practices, as letting developers manage the production
environment.

33 losdeldgiim.github.io

https://losdeldgiim.github.io/

App. Management 4. Deployment Strategies and DevOps

4.4.1. RACI Method

The RACI method is a responsibility assignment matrix that helps to clarify
roles and responsibilities within a project or organization. It has four categories:

= Responsible: The person or team responsible for completing a task or making
a decision.

= Accountable: The person who is ultimately accountable for the task or deci-
sion (specially in the comercial or juridical aspects). Only one person can be
accountable for each task or decision, and without the accountable person, the
task or decision will not be completed.

» Consulted: The person or team that provides input or expertise for a task
or decision. They are usually consulted before a decision is made or a task is
completed.

s Informed: The person or team that needs to be kept informed about the
progress or outcome of a task or decision. They are usually informed after a
decision is made or a task is completed.

There are usually two matrices, the initial matrix (that covers the first confi-
guration of the system) and the ongoing matrix (that covers the maintenance and
updates of the system). Usually the four categories are divided between the Clients,
the Development Team and the Operations Team.

4.5. Deployment with Containers Technology

During the last years, containers have become a popular technology for deploying
applications. A container is a process that runs in a host operating system, isolated
from other processes and containers, with its own filesystem, network interfaces, and
resource limits. In a container, the application and its dependencies are packaged
together, ensuring that it runs consistently across different environments. This in-
creases the portability of applications and helps developping software. Some of the
most popular containerization platforms are Docker and Kubernetes.

4.5.1. Containers VS Virtual Machines

Containers and virtual machines (VMs) are both technologies that provide iso-
lation and resource management for applications, but they do so in different ways.
VMs run a full operating system on top of a hypervisor, which abstracts the un-
derlying hardware. Each VM has its own kernel and resources, making them more
resource-intensive and slower to start compared to containers. On the other hand,
containers share the host operating system’s kernel and resources, allowing them to
be more lightweight and faster to start.

4.5.2. Isolation Measures

In this section, topics as chroot, namespaces, or cgroups will be briefly explai-
ned, as they are the basis of containerization technology.

34 losdeldgiim.github.io

https://losdeldgiim.github.io/

App. Management 4. Deployment Strategies and DevOps

Command chroot

The Unix chroot command changes the apparent root directory for the current
running process and its children. This creates a confined space (a chroot jail) where
the process can operate, isolating it from the rest of the file system. However, it is not
a complete isolation mechanism, as they can still see all the processes running in the
host system, no network isolation is provided, and if the process has root privileges, it
can escape the jail. It is used as follows: chroot <new_root_directory> <command>.
For example, chroot /home/user/jail /bin/bash would start a bash shell with
the root directory set to /home/user/jail.

Command pivot_root

The pivot_root command is a Linux system call similar to chroot, but it pro-
vides a more complete isolation mechanism. It moves the current root filesystem to a
new location and mounts a new root filesystem in its place. This allows for better iso-
lation, as the process cannot see the original root filesystem. It is what Docker uses. It
is used as follows: pivot_root <new_root_directory> <put_old_root_here>.
For example, pivot_root /home/user/new_root /home/user/old_root would
move the current root filesystem to /home/user/old_root and set /home/user/new_root
as the new root filesystem.

Namespaces

Namespaces are a feature of the Linux kernel that provides isolation for various
system resources. There are several types of namespaces, each isolating a specific
resource:

= PID Namespace: Isolates process IDs, allowing processes in different names-
paces to have the same PID. A child namespace will have its PID in its father
namespace and a different one in its own namespace.

Control groups - cgroups

Control Groups (cgroups) is a Linux kernel feature that limits, accounts for, and
isolates the resource usage (CPU, memory, disk I/O, network, etc.) of a collection of
processes. It is needed in a containerization environment to ensure that containers
do not consume more resources than allocated, which could lead to performance
degradation or system instability. Let’s remark some important folders and files
related to cgroups:

» /sys/fs/cgroup/: This is the main directory where cgroups are organized.
Inside this directory, apart from some general files, there are subdirectories for
each type of processes. The two main subdirectories are:

e /sys/fs/cgroup/system.slice/: This directory contains cgroups for
system services managed by the init system (e.g., systemd). For instance,
the docker.service cgroup is located in /sys/fs/cgroup/system.slice/docker.servi
and it defines the resource limits for the Docker service.

35 losdeldgiim.github.io

https://losdeldgiim.github.io/

App. Management 4. Deployment Strategies and DevOps

e /sys/fs/cgroup/user.slice/: This directory contains cgroups for user
processes.

» cpu.max: This file defines the maximum CPU time that a cgroup can use. It
consists of two values: the first one is the quota (the total amount of CPU
time that the cgroup can use in a given period), and the second one is the
period (the length of the time period in microseconds). For example, if cpu.max
contains “50000 100000”, it means that the cgroup can use up to 50 % of the
CPU time.

» memory.max: This file defines the maximum amount of memory that a cgroup
can use. If the processes in the cgroup exceed this limit, they will be killed by
the kernel. For example, if memory.max contains “512M”, it means that the
cgroup can use up to 512 megabytes of memory.

4.5.3. Docker

Docker is a popular containerization platform that simplifies the process of crea-
ting, deploying, and managing containers. It has become a standard tool in the
DevOps world due to its ease of use and powerful features. Some important aspects
should be defined:

= Docker Image: A Docker image is a lightweight, standalone, and executable
package that includes everything needed to run a piece of software, including
the code, runtime, libraries, environment variables, and configuration files.

= Docker Container: A Docker container is a runtime instance of a Docker
image. It is an isolated environment where the application runs, sharing the
host operating system’s kernel but with its own filesystem and resources.

= Docker Registry: A Docker registry is a storage and distribution system for
Docker images. It allows users to store and share their images with others.
The most popular public registry is Docker Hub, but there are also private
registries available.

= Dockerfile: A Dockerfile is a text file that contains a set of instructions to
build a Docker image. It defines the base image, the application code, depen-
dencies, and any necessary configuration.

= Docker Compose: Docker Compose is a tool for defining and running multi-
container Docker applications. It allows you to use a YAML file to configure
your application’s services, networks, and volumes, making it easier to manage
complex applications with multiple containers.

Some important Docker commands are the following;:

» docker build <path>: Builds a Docker image from a Dockerfile. With the -t
option, a name can be given to the image.

» docker run <image>: Runs a Docker container from a specified image.

36 losdeldgiim.github.io

https://losdeldgiim.github.io/

App. Management 4. Deployment Strategies and DevOps

e -d: Runs the container in detached mode (in the background).

e —p <host_port>:<container_port>: Maps a port from the host to a
port in the container, allowing access to the application running inside
the container.

e --name <container_name>: Assigns a name to the container for easier
management.

e ——rm: Automatically removes the container when it exits, keeping the
system clean.

docker ps: Lists all running containers. With the -a option, it lists all con-
tainers, including those that are stopped.

docker stop <container_id>: Stops a running container.

docker rm <container_id>: Removes a stopped container.

docker rmi <image_id>: Removes a Docker image.

Some aspects are different in the integration and deployment phases when using
Docker:

= After the CI server, an app would normally just be deployed as explained in
this chapter.

= With Docker, after the CI server builds and tests the application, it creates a
Docker image that is pushed to a Docker registry. In the deployment phase,
the Docker image is pulled from the registry and run as a container in the
target environment.

37 losdeldgiim.github.io

https://losdeldgiim.github.io/

App. Management 4. Deployment Strategies and DevOps

38 losdeldgiim.github.io

https://losdeldgiim.github.io/

5.

Secure Deployment and CA

Case Study

As it has already been explained in the previous chapters, testing is a key part
of the software development lifecycle. However, it is useless if an atacker can easily
compromise the deployed application. Therefore, it is essential to ensure that the
deployment process is secure and that the application is protected against common
threats. There are two main types of threats that need to be considered:

Malicious Adversaries: They are whether malicious insiders or external
attackers that impersonate legitimate users to gain unauthorized access to the
system. They are indeed malicious.

Benign Insiders: They are legitimate users that may unintentionally com-
promise the system’s security due to lack of knowledge or carelessness. They
are not malicious, but their actions can still pose a threat to the system.

There are some best practices that can be followed to ensure a secure deployment:

Code Reviews: The code should be reviewed by multiple developers to ensure
that it is secure and free of vulnerabilities. It also helps to share the knowledge
and improve the overall quality of the code. Moreover, the concept “treat con-
figuration as code” should be applied, so configuration files are also reviewed.

Secrets: Secrets such as passwords, cryptographic keys, and authorization to-
kens should be stored securely using Key Management Systems (KMS), and
should never be hardcoded in the source code or pushed to version control
systems.

Automatization: It should be done in order to remove human error from the
deployment process. It also improves security, as helps avoiding attackers to
introduced malicious code during the deployment.

Shift Left: Security should be integrated into the development process from
the very beginning, rather than being an afterthought. This will save time and
money.

Builds: The process of building the application should have three main pro-
perties:

e Hermetic: All the inputs (source code, compiler, libraries, etc.) should
be specified and controlled. The external dependencies should be fetched

39

App. Management 5. Secure Deployment and CA Case Study

from trusted sources and should be versioned and hashed to ensure their
integrity.

e Reproducible: The same inputs should always produce the same (bit by
bit)outputs. Hermetic builds help achieving this property, and it helps
verifying the origins of the deployed code.

e Verifiable: The origin of the build should be verifiable, ensuring that it
was built from the intended source code.

5.1. Binary Provenance

In order to achieve builds with these properties, the concept of “binary prove-
nance” is used. It lets to trace back the binary to its source code, build process, and
environment. A first aproach to achieve this is:

= There is a build system that, after building the application, produces a build
recipe that contains all the information needed to reproduce the build, inclu-
ding the source code version, compiler version, build flags, and dependencies.
The build recipe is then signed with a private key to ensure its authenticity
and integrity, and the output is both the binary and the signed build recipe.

However, in some organizations the build system may execute all types of com-
mands, so attackers could exploit this to introduce malicious code during the build
process. To mitigate this risk, user-commands should be executed in an environment
with limited privileges (no access to the keys) and a secured HTTP connection should
be used to avoid man-in-the-middle attacks. Therefore, a more robust aproach to
achieve binary provenance is:

= The build system is divided into two parts: a orchestrator and a worker. The
orchestrator is responsible for issuing a top-level command to the worker, which
is in charge of executing the build commands. The worker outputs the binary
data and returns the artifact identifier to the orchestrator, which then produces
the signed build recipe (if the artifact identifier matches the expected one).

5.2. Certificate Authorities (CA)

For asymetric cryptography, a proof of the authenticity of the public key is
needed. This is done through certificates, which are mode of:

= The Public key of the entity with its identity information.
» All that signed by a trusted third party, called Certificate Authority (CA).

The public key of the CA is widely distributed and trusted by all parties, and
are usually pre-installed in web browsers and operating systems. A PKI (Public Key
Infrastructure) is a system that manages the issuance, revocation, and validation of
digital certificates.

40 losdeldgiim.github.io

https://losdeldgiim.github.io/

App. Management 5. Secure Deployment and CA Case Study

5.2.1. CA Creation

Google wanted to have their own CA to issue certificates for their internal ser-
vices. That way, they did not have to rely on external CAs, which could be com-
promised or unavailable. They also decided to use their own software because of
the flexibility and control it provided. Even though they obviously had to use third-
party libraries for some parts, they tested them thoroughly and made sure they were
secure.

Programming Languages

They used two programming languages:

» Go: It is memory-safe, important to work with unknown inputs such as certi-
ficate signing requests.

s C++: offers more interoperability with existing Google infrastructure, and
offers a sandboxed environment to run untrusted code.

= They were both used because of performance reasons and the amount of good
and safe libraries available.

Complexity vs Understandability and Ease of Use

Most comercial CA are really complex, as they have to offer a lot of features
and support a wide range of use cases. However, Google wanted to have a CA with
the minimum set of features needed for their internal use cases, so they could have
a better understanding of the system and make it easier to use and maintain. It is
continously improved, as they realised that they initially used too many microser-
vices.

Security of their Private Keys

A great risk for a CA is the compromise of its private keys, as it would allow an
attacker to issue fraudulent certificates. To mitigate this risk, Google uses Hardwa-
re Security Modules (HSM) to store their private keys. HSMs are tamper-resistant
devices that provide a secure environment for key storage and cryptographic opera-
tions. They also use multi-factor authentication and strict access controls to limit
access to the HSMs, which are offline most of the time to prevent remote attacks.
Intermediate Keys are also used, so the root key is only used to sign the intermediate
keys, which are then used to sign the certificates. This way, if an intermediate key
is compromised, the root key remains secure.

5.3. Human Factors in Secure Deployment

In order to avoid human errors during the deployment process, there are some
general guidelines available in internet:

41 losdeldgiim.github.io

https://losdeldgiim.github.io/

App. Management 5. Secure Deployment and CA Case Study

» NIST: National Institute of Standards and Technology (NIST) provides the
“Secure Software Development Framework”, which includes guidelines for se-
cure deployment and references to other relevant standards.

» OWASP SAMM: Open Web Application Security Project (OWASP) pro-
vides the “Software Assurance Maturity Model” (SAMM), which are some
open-source guidelines for secure software development, including deployment.
They propose that a company should be divided into 5 business functions:

e Governance: Strategy and metrics.

e Design: Threat modeling and secure architecture.

e Implementation: Secure coding and code review.

e Verification: Security testing and vulnerability management.

e Operations: Incident detection and response.

» BSIMM: Building Security In Maturity Model (BSIMM) provides anual re-
ports of security activities and trends. It is based on the observation of around
130 companies.

5.3.1. Vulnerability Management

Vulnerability management is the process of identifying, assessing, and mitigating
vulnerabilities in software applications. Before addressing how are they identified,
some concepts should be explained:

» Bug: General term for a flaw in the software that can cause it to behave
unexpectedly or incorrectly. Not all bugs are security-related, but they can
still have an impact on the security of the application.

s Weakness: A type of bug that, under certain conditions, can lead to a vul-
nerability. A weakness is a potential security issue that may or may not be
exploitable, depending on the context and the presence of other factors.

The CWE (Common Weakness Enumeration) is the world’s most widely adop-
ted list of weaknesses types. It is developed by the community.

= Vulnerability: An specific instance of a weakness that has been identified in a
particular application. A vulnerability implies that the system can be exploited
by an attacker to cause harm. It is similar to an exposure.

The CVE (Common Vulnerabilities and Exposures) is a list of publicly dis-
closed vulnerabilities and exposures. It is maintained by MITRE Corporation,
and each vulnerability is assigned a unique identifier (CVE ID) and a descrip-
tion of the vulnerability, its impact, and its severity.

Identifying Bugs: Bug Bounty Programs

Appart from using the CWE and CVE databases, companies can also identify
vulnerabilities through bug bounty programs, which are crowed-sourced systems
whose aim is discovering vulnerabilities in their applications. Vulnerability huters

42 losdeldgiim.github.io

https://losdeldgiim.github.io/

App. Management 5. Secure Deployment and CA Case Study

find vulnerabilities and report them to the company, which then rewards them with
money /credit /reputation. Some important Bug Bounty Programs are bugcrowd and
hackerone. Some important questions arise:

= Why should bug hunters be paid?:

There are several reasons for this:

e The “zero price” fallacy: If they were not paid, researchers would ha-
ve zero opportunity cost, so they would not have any incentive to find
vulnerabilities.

e Competing with the black market: If they are not paid, they may sell the
vulnerabilities to the dark web, where they can get a lot of money for
them.

e Professionalism: Paying bug hunters is a way to recognize their work and
encourage them to continue finding vulnerabilities.

e Incentiving Depth: If they are not paid, they may only look for low-
hanging fruit, while if they are paid, they may be incentivized to look for
more complex and critical vulnerabilities.

e Safe Harbor: It provides a legal framework for researchers to report vul-
nerabilities without fear of legal repercussions.

= What benefits do bug hunters get?:

Apart from money, they can get several benefits as learning, reputation, en-
joyment, legal safe harbor, and even job opportunities.

= What challenges do bug hunters face?:

They may face several challenges, such as poor communication with the com-
pany, duplicated reports...

Adressing Bugs

Once the bugs are identified, they need to be addressed. However, it is impossible
to fix all vulnerabilities at once, so they should be prioritized based on their severity
and impact. This can be beasured by several metrics (or even combining them):

= CVSS, Common Vulnerability Scoring System.

Method used to supply a qualitative measure of severity (not risk). Each vul-
nerability is scored from 0 (least severe) to 10 (most severe) based on several
factors, and then they are categorized into four severity levels:

e Critical (9,0 — 10,0): < 3h.

e High (7,0 — 8,9): < 3day.

e Medium (4,0 — 6,9): < 1 month.

e Low (0,1 —3,9): < 3month.

43 losdeldgiim.github.io

https://losdeldgiim.github.io/

App. Management 5. Secure Deployment and CA Case Study

= EPSS, Exploit Prediction Scoring System.

It uses the chance of a vulnerability being exploited in the wild, and the most
likely to be exploited are the ones that should be fixed first.

» Known Exploited Vulnerabilities (KEV) catalog from CISA.

» Business impact / Asset criticality.

Supply Chain Security

Modern software is dependent on many different components. Each dependency
has the potential to introduce security risks into the end-product. When a vulnera-
bility is found, most of the time a solution to it is reached in just a few days: the
problem is finding all the systems that are vulnerable.

To solve this problem, an idea from the automotive industry is used: the Bill
of Materials (BOM), which is a list of all the components used in a car, so that
when a component is defective, all the cars that are affected can be easily identified.
In software, a Software Bill of Materials (SBOM) is used, which is a list of all the
components used in a software application, including their versions and licenses.
Some important standards for SBOM are:

» NTIA’s minimum elements (2021): It defines the minimum set of information
that should be included in an SBOM, such as the component name, version
and supplier. The current “minimum” requirements are higher than this initial
proposal.

» CycloneDX (OWASP)

It also provides a tool (OWASP Dependency Track) to make SBOM part of the
software development lifecycle. When the source code is finished, the SBOM
is generated and signed, and then it is sent to an analytics server that checks
for vulnerabilities and license compliance. It also provides a standard format
for SBOMs, which makes it easier to share and analyze them.

» SPDX (Linux Foundation)

= SWID (NIST)

5.3.2. Security Champion

When developing secure software, a common problem is the lack of organiza-
tion. A common solution to this problem is to have a security champion in each
development team. In addition, all security champions should form a community to
share knowledge and best practices, so the whole company is improved. A security
champion should at least have the following responsibilities:

= Being the source of security knowledge in the team. They should increase
security awareness and promote best practices.

s Identify security risks and vulnerabilities in the team’s code and processes.

44 losdeldgiim.github.io

https://losdeldgiim.github.io/

App. Management 5. Secure Deployment and CA Case Study

HighA
. B=MAP
=]
©
2
B Success
=
Failure
Low >
Hard to do Easy to do

Ability

Figura 5.1: Fogg Behavior Model

» Review and escalation.

However, security champions must also be organized and supported by the com-
pany, as they cannot do everything alone. Some of the problems that may arise
are:

= Shift in responsibilities: Developers may think that the security champion is
responsible for all security-related tasks, leading to a lack of ownership and
accountability among team members.

= Lack of time: Security champions may struggle to balance their security res-
ponsibilities with their regular development tasks, leading to burnout and
decreased effectiveness.

» Insufficient training: Security champions may not have the necessary skills or
knowledge to effectively identify and mitigate security risks. They all wish they
had a security team backing them up.

= Selection: Choosing the right person for the role is crucial, and sometimes no
one from the team wants to take the responsibility.

= Security Champion Skills: They need to have both technical and soft skills,
such as communication and leadership. The Fogg Behavior Model (figure 5.1)
explains that only when the three factors (motivation, ability and trigger) are
present, a behavior will occur.

» Communication with PM: They need to effectively communicate security issues
and risks to project managers and other stakeholders, as security is not always
a priority for them.

45 losdeldgiim.github.io

https://losdeldgiim.github.io/

App. Management 5. Secure Deployment and CA Case Study

In order to address these challenges, in the OWASP Security Champions Guide
there is a manifesto that outlines the principles and values that security champions

should uphold:
= Be passionate about security.
= Start with a clear vision.
= Secure management support.
= Nominate a dedicated captain.
= Trust your champions.
= Create a community.
= Promote knowledge sharing.
= Reward responsibility.
= [nvest in your champions.
= Anticipate personnel changes.

As previously explained, Security Champions should promote knowledge sha-
ring within the organization. With that aim is the OWASP Juice Shop, which “is
probably the most modern and sophisticated insecure web application”. It is an in-
tentionally insecure web application for security training purposes, as it can be used
in security trainings or awareness demos.

46 losdeldgiim.github.io

https://losdeldgiim.github.io/

6. Software Testing

As discussed in previous chapters, testing is a crucial aspect of software deve-
lopment and maintenance. It is known that in complex systems, usually more time
is needed to write the tests than to write the actual code. However, even with the
best coding practices, bugs and issues are inevitable. Unexpected inputs may lead
to:

= Confidentiality Violations: Unauthorized access to sensitive data.

» Integrity Violations: Unauthorized modification of data.

= Availability Violations: Disruption of service.

6.1. Test Types

There are two main categories of tests: unit tests and acceptance tests. In this
section, we will explore these types of tests in detail.

6.1.1. Unit Tests

An unit test is a type of software test that focuses on verifying the functionality
of a specific section of code, typically at the function or method level. The main
goal of unit testing is to ensure that individual components of the software work
as intended in isolation, without dependencies on other parts of the system. There
are a lot of tools for unit testing, as xUnit or GoogleTest. There are two main
approaches to develop the unit tests:

= Classic Approach: Write the code first, then create unit tests to verify its
functionality. Code and tests should be commited together, and when the
code is reviewed, the tests should be reviewed as well.

» Test-Driven Development (TDD): Write the unit tests before writing the ac-
tual code. The tests will fail until the code is implemented correctly. This
approach encourages developers to think about the requirements and design
of the code before implementation.

It should also be noted that unit tests may sometimes require refactoring of the
code to make it more testable. This can lead to better code quality and maintaina-
bility.

47

App. Management 6. Software Testing

6.1.2. Acceptance Tests

Acceptance tests, also known as end-to-end tests or functional tests, are designed
to verify that a software application meets the specified requirements and behaves
as expected from the user’s perspective. These tests focus on validating the overall
functionality of the system, ensuring that all components work together seamlessly
to deliver the desired user experience. They usually need much more time to be
developed and run than unit tests, but they are crucial to ensure that the software
meets the user’s needs. If an acceptance test fails but all of the unit tests pass, the
error is usually difficult to locate.

Regarding the acceptance tests, it should be noted that flakiness is more common
than in unit tests. A flaky test is a test that can pass or fail non-deterministically,
without any changes to the code being tested. This can be due to various factors,
such as timing issues, external dependencies, or environmental factors. Flaky tests
can lead to false positives or false negatives, making it difficult to determine the
actual state of the software. Therefore, it is important to identify and address flaky
tests to ensure the reliability of the testing process.

6.2. Program Analysis

Analyzing code can help to identify potential issues and improve code qua-
lity. There are two main types of program analysis: static analysis (analyzing code
without executing it) and dynamic analysis (analyzing code during execution).

When analyzing code, both the source and the binary code can be considered.
There are two aspects that should be taken into account:

» Dynamic Binary Instrumentation (DBI): Using kind of a virtual machine to
analyze the binary code during execution. Examples of DBI tools are Valgrind
or Intel Pin.

= Dynamic Analysis based on compiler support: The compiler inserts additional
code to perform the analysis during execution. They are often required to
detect memory errors.

In order to analyze code during execution, it is common to use sanitizers,
which are tools that detect various types of errors at runtime. A really common
sanitizer is Address Sanitizer, which is described in the next section.

6.2.1. Adress Sanitizer

Address Sanitizer (ASan) is a fast memory error detector. It usually detects:
» Use-after-free: Accessing memory after it has been freed.

= Qut-of-bounds access: Accessing memory outside the allocated bounds.

ASan uses a technique called shadow memory to keep track of the state of each
byte of memory. For each 8 bytes of application memory, ASan maintains 1 byte of

48 losdeldgiim.github.io

https://losdeldgiim.github.io/

App. Management 6. Software Testing

shadow memory. The shadow memory is used to store metadata about the state of
the corresponding application memory. When a programm is compiled with ASan,
additional instrumentation code is added with two main aims:

= Before every memory access, ASan checks the corresponding shadow memory
to determine if that memory adress is “poisoned” (i.e., invalid or unsafe to
access).

= When memory is allocated, 32 bytes of “red zones” are added before and after
the allocated memory to detect out-of-bounds accesses.

An important aspect to consider when using ASan is that it increases both
memory usage and execution time. Typically, ASan increases memory usage by
about 2-3 times and slows down program execution by a factor of 2-3. Given that
overhead, ASan is primarily used during development and testing phases rather than
in production environments.

6.3. The Quest for Coverage

The goal of testing is to cover as much code as possible, in order to detect
potential bugs and issues. This should be done with the minimum number of test
cases, to reduce the time and effort needed to run the tests. Typically, one test
case explores one path through the program. In order to achieve this goal, several
techniques can be used, such as symbolic execution and fuzzing.

6.3.1. Symbolic Execution

Symbolic execution is a program analysis technique that explores program paths
by treating input values as symbolic variables rather than concrete values. This
allows the analysis to reason about multiple execution paths simultaneously, enabling
the detection of potential bugs and vulnerabilities that may not be easily discovered
through traditional testing methods.

When the symbolic execution engine finishes, all the possible paths through the
program have been explored, and a set of path constraints has been generated for
each path. These path constraints can be used to generate test inputs that will exer-
cise specific paths through the program, helping to achieve better code coverage and
identify potential issues.

However, symbolic execution has some limitations in practice, as systems can be
really complex:

= Path Explosion: The number of possible execution paths can grow exponen-
tially with the size of the program, making it infeasible to explore all paths.

» Handling of External Dependencies: Symbolic execution may struggle to accu-
rately model interactions with external libraries, system calls, hardware com-
ponents, or user inputs.

Therefore, the scope is usually limited to small and critical parts of the code, or
it is combined with other techniques, such as fuzzing.

49 losdeldgiim.github.io

https://losdeldgiim.github.io/

App. Management 6. Software Testing

SMT (Satisfiability Modulo Theories) Solvers

SMT solvers are tools that determine the satisfiability of logical formulas with
respect to certain background theories, such as arithmetic, bit-vectors, arrays, and
more. They are commonly used in symbolic execution to solve the path constraints
generated during the analysis. By solving these constraints, SMT solvers can ge-
nerate concrete input values that will exercise specific paths through the program,
helping to achieve better code coverage and identify potential issues. Some popular
SMT solvers include Z3, CVC4, and Yices.

SMT Z3

Z3 is a high-performance SMT solver developed by Microsoft Research. It is
usually used in python, importing the z3 module. It provides its own data types,
and the more relevant ones are:

= x = z3.Int('x")

= x = z3.Bool('x")

= x = z3.Real('x")

m x = z3.BitVec('x', <number_of_bits>)

In addition to those data types, z3 also lets using the plural form of the data
types to create multiple variables at once. For example, x, y = z3.Ints('x y')
creates two integer variables, x and y.

To solve a set of constraints, the following steps are usually followed:

1. Create a solver instance: solver = z3.Solver()

2. Add constraints to the solver: solver.add(<constraint>). When creating
them, the operators used are the same as in regular Python code, but they are
overloaded to work with z3 data types. However, the logic operators not, and,
and or are represented as z3.Not (), z3.And (), and z3.0r (), respectively.

3. Try to solve the constraints with solver.check(). It can have two possible
outputs:

» z3.sat: The constraints are satisfiable, and a solution can be found using
solver.model ().

= z3.unsat: The constraints are unsatisfiable, meaning that there is no
solution that satisfies all the constraints.

6.3.2. Fuzzing

Fuzzing is an automated software testing technique that involves providing diffe-
rent types of inputs to a program in order to identify potential bugs, vulnerabilities,
or unexpected behavior. The main goal of fuzzing is to explore the program’s input
space and uncover edge cases that may not have been considered during develop-
ment. There are several types of fuzzing techniques, including the following:

50 losdeldgiim.github.io

https://losdeldgiim.github.io/

App. Management 6. Software Testing

» Random Fuzzing: Randomly generates inputs without any specific knowledge
of the program’s structure or behavior. The inputs for the following test cases
are also generated randomly. This technique is simple to implement but may
not be very effective in finding deep or complex bugs.

= Mutation-based Fuzzing: Starts with a set of valid inputs, and the inputs for
the following test cases are generated by making small modifications (muta-
tions) to these valid inputs.

s Cover-guided Fuzzing: Starts with a set of initial inputs and, after running each
test case, it analyzes the code coverage achieved. If new paths are discovered,
the inputs that led to those paths are mutated to generate new test cases,
and if no new paths are found, that input is discarded. This technique is more
effective in exploring the program’s input space and finding bugs.

A really common tool for fuzzing is Atheris.

Atheris

Atheris is a coverage-guided fuzzer for Python. It is designed to be easy to use
and integrate into existing testing workflows. It needs to instrument the code to be
tested, which is done by using the following python functions:

= atheris.instrument_imports(): This function is used to instrument the im-
ports in the code, allowing Atheris to track the coverage of the imported mo-
dules.

= atheris.instrument_func(func): This function is used to instrument a spe-
cific function, allowing Atheris to track the coverage of that function.

» atheris.instrument_all(): This function is used to instrument all the code
in the module, allowing Atheris to track the coverage of the entire codebase.

In order to improve efficiency, only the most critical parts of the code are usually
instrumented, as instrumenting the entire codebase can lead to a significant increase
in execution time and memory usage. The funcions used to run the fuzzer are:

» atheris.Setup(<args>, <test_function>): This function is used to set up
the fuzzer, specifying the command-line arguments and the test function to be
executed. Usually, <args> is set to sys.argv, as it allows the fuzzer to accept
command-line arguments for configuration.

In the arguments, the following options can be specified:
e ——runs=N: Specifies the number of test cases to be executed before the

fuzzer stops. If not specified, the fuzzer will run indefinitely until it is
manually stopped.

e —-timeout=N: Specifies the maximum time (in seconds) that the fuzzer
will run before it stops. If not specified, the fuzzer will run indefinitely
until it is manually stopped.

51 losdeldgiim.github.io

https://losdeldgiim.github.io/

App. Management 6. Software Testing

e ——seed=N: Specifies the seed for the random number generator used by
the fuzzer. This can be useful for reproducibility, as it allows you to
generate the same sequence of test cases by using the same seed.

e <corpus_file>: Specifies a file containing a corpus of inputs to be used as
the initial seed for the fuzzer. The fuzzer will use these inputs to generate
new test cases through mutation. If not specified, the fuzzer will start
with an empty corpus and generate test cases randomly.

» atheris.Fuzz(): This function starts the fuzzing process, running the speci-
fied test function with different inputs generated by the fuzzer. It will continue
to run until it is manually stopped or until a certain condition is met (e.g., a
specific number of test cases have been executed).

There are different types of lines in the output of Atheris:

= INITED: Indicates that the fuzzer has been initialized and is ready to start
fuzzing.

= NEW: Indicates that a new path has been discovered during fuzzing. This means
that the fuzzer has generated an input that has led to a new execution path
in the program.

= pulse: Indicates that the fuzzer is still running and has not yet found any new
paths. This is a normal part of the fuzzing process, as it may take some time
for the fuzzer to discover new paths.

In each output, the following information is provided:

= cov: The current code coverage achieved by the fuzzer, expressed number of
nodes in the control flow graph that have been covered.

= corp <x>/<y>b: The size of the corpus, expressed as the number of inputs in
the corpus (x) and the total size of those inputs in bytes (y).

= exec/s: The number of executions per second, which indicates how quickly
the fuzzer is generating and testing new inputs.

= L: The length of the input that led to the discovery of a new path. This can
provide insight into the complexity of the input that triggered the new path.

= It also indicates how was the new path discovered (Change-Byte, Cross-0ver
(combining two existing inputs), CopyPart, EraseBytes, InsertByte, etc.).

52 losdeldgiim.github.io

https://losdeldgiim.github.io/

7. ﬂ'bungen

7.1. Application Lifecycle Management (ALM)

Ejercicio 7.1.1.

1. Erkléaren Sie den Begriff “Application Lifecycle Management” (ALM). Geben
Sie an, welche Phasen im ALM typischerweise enthalten sind und warum das
Verstandnis dieser Phasen fiir das App Management wichtig ist.

2. Beschreiben Sie die Bedeutung der Sicherheit im Application Management.
Nennen Sie mindestens drei Sicherheitsaspekte, die bei der Entwicklung und
Verwaltung von Anwendungen zu berticksichtigen sind.

3. Vergleichen Sie die Phasen des Application Lifecycle Management (ALM) mit
den Phasen des Software Development Lifecycle (SDLC). Identifizieren Sie
mindestens zwei Gemeinsamkeiten und zwei Unterschiede zwischen diesen bei-
den Ansatzen.

Ejercicio 7.1.2. Erklaren Sie die Vor- und Nachteile der folgenden Entwicklungs-
methoden:

1. Agile Entwicklung
2. Scrum

3. Wasserfall-Modell
4. DevOps-Ansatz

Ejercicio 7.1.3. Nehmen Sie an, Sie sind der Manager eines kleinen Softwareent-
wicklungsteams, das eine Echtzeit-Messaging-App fiir den Campus der “Universitit
der Zukunft” entwickelt. Diese App ermoglicht Studierenden und Professoren ei-
ne einzigartige Kommunikation, die den Alltag auf dem Campus einfacher und un-
terhaltsamer macht. Erklaren Sie, warum es wichtig ist, von Anfang an ein effektives
Application Management in Thre Projekte zu integrieren. Geben Sie konkrete Beis-
piele fiir mogliche Probleme, die vermieden werden kénnten, wenn Sie sich friithzeitig
auf das Application Management konzentrieren, um sicherzustellen, dass Thre App
im Universitatsalltag reibungslos funktioniert.

Ejercicio 7.1.4. Thr Team entwickelt weiterhin die Echtzeit-Messaging-App. Bes-
chreiben Sie, wie Scrum den Entwicklungsprozess strukturiert.

33

1

10

App. Management 7.2. Version Control System (VCS)

$ git status
On branch cool_stuff
Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git restore <file>..." to discard changes in working directory)
modified: text.py

no changes added to commit (use "git add" and/or "git commit -a")
$ git add text.py
$ git commit -m "New Feature"
[cool_stuff 00c5b2al] New Feature
1 file changed, 3 insertions(+), 2 deletions(-)

Cédigo fuente 2: Losung zu Ubung 7.2.2.1

7.2. Version Control System (VCS)

Ejercicio 7.2.1. Beschreiben Sie die grundlegenden Unterschiede zwischen Git und
SVN hinsichtlich ihrer Arbeitsweise und ihres Datenmodells. Erlautern Sie, was
ein verteiltes Versionskontrollsystem (Git) und ein zentrales Versionskontrollsystem
(SVN) sind.

Zu den folgenden Aufgaben finden Sie hier ein zip-Datei mit den notwendigen
Ressourcen.

Ejercicio 7.2.2.

1. Nehmen Sie an, Sie arbeiten mit einem kleinen Team an der Echtzeit-Messaging-
App fiir die ,, Universitit der Zukunft“. Sie haben noch lokale Anderungen, die
noch nicht committet sind. Erstellen Sie bitte einen Commit und schlieflen Sie
somit die Entwicklung des neuen Features ab.

The code needed to solve this exercise is shown in Listing 2.

2. Da das neue Feature nun fertig implementiert ist, mochten Sie dafiir sorgen,
dass es auch in den aktuellen master aufgenommen wird. Der iibliche Prozess
in Threm Team ist, einen Merge Request (MR) zu erstellen, der den Feature-
Branch in den master iibernimmt. Es gibt die Richtlinie, dass MRs nur dann
akzeptiert werden, wenn sie mit dem master aktuell sind und keine Konflikte
erzeugen. Sorgen Sie dafiir, dass der Feature-Branch cool_stuff mit dem
master-Branch aktuell ist.

The code needed to solve this exercise is shown in Listing 3.

Ejercicio 7.2.3. Thr MR wurde akzeptiert und das neue Feature ist im master.
Parallel dazu haben Sie im other_cool_stuff-Branch noch an einem &hnlichen
Feature gearbeitet. Bereiten Sie auch diesen Branch fiir den MR in den master vor.

At first it is needed to execute the code shown in Listing 4. After manually
solving the conflict, the code shown in Listing 5 is executed.

54 losdeldgiim.github.io

https://github.com/LosDelDGIIM/LosDelDGIIM.github.io/blob/main/subjects/Erasmus-DUE/Application%20Management/Blatt_Material/blatt02_material.zip
https://losdeldgiim.github.io/

App. Management 7.2. Version Control System (VCS)

1 $ git branch
* cool_stuff
master
$ git checkout master
5 Switched to branch 'master'
$ git merge cool_stuff
Merge made by the 'ort' strategy.
text.py | 12 ++++ttttttt-
1 file changed, 11 insertions(+), 1 deletion(-)

Cédigo fuente 3: Losung zu Ubung 7.2.2.2

1 $ git branch
master
* other_cool_stuff
$ git checkout master
5 Switched to branch 'master'
$ git merge other_cool_stuff
Auto-merging text.py
CONFLICT (content): Merge conflict in text.py
Automatic merge failed; fix conflicts and then commit the result.

Cédigo fuente 4: Erster Teil der Losung zu Ubung 7.2.3.

1 § git add text.py
$ git commit
[master 9abac85] Merge branch 'other_cool_stuff'

Cédigo fuente 5: Zweiter Teil der Losung zu Ubung 7.2.3.

55 losdeldgiim.github.io

https://losdeldgiim.github.io/

App. Management 7.2. Version Control System (VCS)

#1/bin/sh

git diff --cached --name-only --diff-filter=A \
| while read -r name; do

git rm --cached "$name" > /dev/null 2> /dev/null
done

exit O

Cédigo fuente 6: pre-commit Hook that prevents committing new files.

Ejercicio 7.2.4. Ein Kollege von Thnen ist erst seit Kurzem im Team und bittet Sie
um Hilfe, da er lokale Anderungen vorgenommen hat, die er jedoch nicht committen
kann. Helfen Sie ihm, alle gednderten und neu hinzugefiigten Dateien zu committen.

The problem here lies in the fact that there is a pre-commit hook, the shown
in Listing 6, that prevents committing new files. The solution is just to delete that
hook from the .git/hooks directory.

56 losdeldgiim.github.io

https://losdeldgiim.github.io/

App. Management 7.3. Distributed Git und Internals

$ git log --graph --oneline --all

* e777451 (HEAD -> cool_stuff) New Commit
* fbdb062 new motivating phrases

| * abfdf5d (master) updated main.py

I/
* 41da045 added new text generation
* 87c476b initial commit

Cédigo fuente 7: Git-Graph nach dem Committen der Anderungen im cool_stuff-
Branch.

$ git rebase master
Successfully rebased and updated refs/heads/cool_stuff.
$ git checkout master ; git merge cool_stuff
Switched to branch 'master'
Updating a5fdfb5d..baael87
Fast-forward
text.py | 12 ++++ttttttt-

1 file changed, 11 insertions(+), 1 deletion(-)

Cédigo fuente 8: Losung zu Ubung 7.2.2.2 mit Rebase.

7.3. Distributed Git und Internals

Ejercicio 7.3.1. In Aufgaben 7.2.2.2 und 7.2.3 des vorherigen Aufgabenblatts soll-
ten Sie die Anderungen des master-Branches in den aktuellen Feature-Branch tiber-
nehmen. Uberlegen Sie sich eine weitere Moglichkeit, die Anderungen zu tiberneh-
men.

1. Aufgabe 7.2.2.2

After committing the new changes to the cool_stuff-Branch, the git graph
is the one shown in Listing 7. The other proposed solution is to rebase the
cool_stuff-Branch on top of the master-Branch. The code needed to do
that is shown in Listing 8. The result of the rebase is a linear history, which
can be seen in the git graph shown in Listing 9.

git log --graph --oneline --all

baael187 (HEAD -> master, cool_stuff) New Commit
9c087cd new motivating phrases

abfdfbd updated main.py

41da045 added new text generation

87c476b initial commit

* X ¥ X * &

Cédigo fuente 9: Git-Graph nach dem Rebase des cool_stuff-Branches auf den
master-Branch.

o7 losdeldgiim.github.io

https://losdeldgiim.github.io/

App. Management 7.3. Distributed Git und Internals

1 §$ git log --graph --oneline --all
x ££f02d9a (HEAD -> other_cool_stuff) fixed unterminated string literal
and added text2 to main
* 13061d3 new text2
| * 07216d8 (master) finalized cool stuff
5 | * 36e8466 new motivating phrases

I/

* abfdfbd updated main.py

* 41da045 added new text generation
* 87c476b initial commit

Cédigo fuente 10: Git-Graph vor dem Rebase des other_cool_stuff-Branches auf
den master-Branch.

1 $ git add text.py
$ git rebase --continue
[detached HEAD fe644de] new text2

1 file changed, 4 insertions(+), 9 deletions(-)

5 Successfully rebased and updated refs/heads/other_cool_stuff.
$ git checkout master ; git merge other_cool_stuff
Switched to branch 'master'

Updating 07216d8..7027614
Fast-forward
10 main.py | 4 ++-—-
text.py | 13 ++++————————-
2 files changed, 6 insertions(+), 11 deletions(-)

Cédigo fuente 11: Losung zu Ubung 7.2.3 mit Rebase.

2. Aufgabe 7.2.3

The initial git graph is the one shown in Listing 10. When trying to rebase
the other_cool_stuff-Branch on top of the master-Branch, a conflict is ge-
nerated. After manually solving the conflict, the code shown in Listing 11 is
executed. The result of the rebase is a linear history, which can be seen in the
git graph shown in Listing 12.

Ejercicio 7.3.2. Uberlegen Sie sich mogliche Vor- und Nachteile der drei vorges-
tellten Distributed Workflows.

1. Dictator and Lieutenants Workflow
2. Integration-Manager Workflow
3. Centralized Workflow

Ejercicio 7.3.3. Der Chef des Teams, zustandig fiir die Entwicklung der Echtzeit-
Messaging-App hat wenig Ahnung von Softwareentwicklung. Er hat damals einfach

58 losdeldgiim.github.io

https://losdeldgiim.github.io/

App. Management 7.3. Distributed Git und Internals

1 §$ git log --graph --oneline --all
*x 7027614 (HEAD -> master, other_cool_stuff) fixed unterminated string
literal and added text2 to main

fe644de new text2

07216d8 finalized cool stuff

36e8466 new motivating phrases

ab5fdf5d updated main.py

41da045 added new text generation

87c476b initial commit

(2]
* ¥ X ¥ X %

Cédigo fuente 12: Git-Graph nach dem Rebase des other_cool_stuff-Branches auf
den master-Branch.

1 $ git fsck --lost-found

Checking object directories: 100% (256/256), done.
Checking objects: 100% (28/28), done.
dangling blob acbc45bdb82b84a3df80a69659ad672c2791£632

5 Verifying commits in commit graph: 100% (8/8), done.
$ git cat-file -p acbc > lost.py
$ git add lost.py ; git commit -m "File recovered"
[master cOOc6ec] File recovered
1 file changed, 16 insertions(+)

10 create mode 100644 lost.py

Cédigo fuente 13: Losung zu Ubung 7.3.4 mit dem Befehl git fsck --lost-found.

irgendwelche Regeln beziiglich des Merge-Prozesses festgelegt, weifl aber nicht wir-
klich, was diese bedeuten, und bittet Sie, einen sinnvollen Workflow fiir das Projekt
zu wahlen. Wahlen Sie einen passenden Workflow aus und begriinden Sie Thre Wahl.

Zu den folgenden Aufgaben finden Sie hier ein zip-Datei mit den notwendigen
Ressourcen.

Ejercicio 7.3.4. Thr Kollege bittet Sie erneut um Hilfe. Dieses mal sei es ernst,
er hat all seine Arbeit der letzten Wochen verloren. Da er sich nicht gut mit Git
auskennt, committet er selten. Als er fertig war, wollte er committen. Dafiir hat er
seine Anderungen mit git add -A in den Staging-Bereich gepackt. Doch da ist ihm
eingefallen, dass er vorher noch Anderungen vom Remoteserver herunterladen muss.
Also fithrt er git fetch aus und sieht, dass Remote—Anderungen iibernommen wur-
den. Doch als er die Anderungen dann endlich in seinem lokalen Branch hat, sind
alle seine eigenen Anderungen verschwunden. Helfen Sie Thm die verlorenen Dateien
wiederherzustellen.

The solution to this exercise involves using the Git command git fsck --lost-found
to recover lost objects. The solution is shown in Listing 13.

Ejercicio 7.3.5. Nehmen Sie an, Sie haben ein Git-Repository, welches die in Ab-
bildung 7.1 dargestellte Commit-Graphen hat. Nehmen Sie nun an, Sie fithren die

59 losdeldgiim.github.io

https://github.com/LosDelDGIIM/LosDelDGIIM.github.io/blob/main/subjects/Erasmus-DUE/Application%20Management/Blatt_Material/blatt03_material.zip
https://losdeldgiim.github.io/

App. Management 7.3. Distributed Git und Internals

HEAD

master
|
1
1

4b6£56 8dd752

Figura 7.1: Git-Repository mit drei Commits und einem Branch master.

4b6£56 8dd752

Figura 7.2: Git-Graph after the command of the Exercise 7.3.5.1.

untenstehenden Git-Befehle aus. Zeichnen Sie den Commit-Graphen nach jedem
Befehl. Wenn ein neuer Commit-Hash berechnet wurde, wahlen Sie bitte eine ein-
deutige zufallige Nummer.

1. git checkout HEAD™1
The result of this command is shown in the git graph in Figure 7.2.

2. git checkout -b 'feature_branch'

The result of this command is shown in the git graph in Figure 7.3.

3. git commit -m 'new feature'

The result of this command is shown in the git graph in Figure 7.4.
4. Zeichnen Sie bitte beide Graphen

a) git merge master

The result of this command is shown in the git graph in Figure 7.5.
b) git rebase master

The result of this command is shown in the git graph in Figure 7.6.

HEAD
feature_branch ’master ‘
v v
4b6£f56 8dd752

Figura 7.3: Git-Graph after the command of the Exercise 7.3.5.2.

60 losdeldgiim.github.io

https://losdeldgiim.github.io/

App. Management 7.3. Distributed Git und Internals

8dd752 |<- -

4b6£56

HEAD
feature_branch

d1e8f3 j«--

Figura 7.4: Git-Graph after the command of the Exercise 7.3.5.3.

8dd752 |<--

HEAD
feature_branch

4b6£56 e4f9al

d1e8£3

Figura 7.5: Git-Graph after the command of the Exercise 7.3.5.4a.

HEAD
master feature_branch
4b6£f56 8dd752 c00cbe

Figura 7.6: Git-Graph after the command of the Exercise 7.3.5.4b.

61 losdeldgiim.github.io

https://losdeldgiim.github.io/

App. Management 7.3. Distributed Git und Internals

1 § git checkout master ; git merge feature_branch ; git branch -d
feature_branch

Cédigo fuente 14: Command to merge the feature branch into the master branch
and delete the feature branch for the graph in Figure 7.5.

8dd752

HEAD
master

e4f9al

4b6£56

d1e8f3

Figura 7.7: Git-Graph after merging the feature branch into the master branch
and deleting the feature branch for the graph in Figure 7.5.

5. Fiihren Sie abschlielend fiir beide Graphen einen Merge von feature branch
in den master aus und loschen Sie den obsoleten Branch.

In both cases, the command needed to merge the feature branch into the
master branch and delete the feature_branch is shown in Listing 14.

a) For the graph in Figure 7.5, after applying the command in Listing 14,
the resulting graph is the one shown in Figure 7.7.

b) For the graph in Figure 7.6, after applying the command in Listing 14,
the resulting graph is the one shown in Figure 7.8.

Ejercicio 7.3.6.

1. Angenommen, Sie haben gerade Ihre neuesten Anderungen committet und
mochten vor dem Pushen testen, ob alles noch funktioniert. Dabei fallt Thnen
auf, dass ein Anfiihrungszeichen fehlt. Sie haben es bereits hinzugefiigt, fin-
den es jedoch unnétig, dafiir einen neuen Commit anzulegen. Fiigen Sie die
Anderung Threm lokalen Commit hinzu.

Y

4b6£56 8dd752

Figura 7.8: Git-Graph after merging the feature branch into the master branch
and deleting the feature branch for the graph in Figure 7.6.

HEAD
master

62 losdeldgiim.github.io

https://losdeldgiim.github.io/

App. Management 7.3. Distributed Git und Internals

1 §$ git add text.py
$ git commit --amend --no-edit
[other_cool_stuff e9274fd] new text2
Date: Thu Oct 26 14:38:02 2023 +0200
5 2 files changed, 8 insertions(+), 3 deletions(-)

Cédigo fuente 15: Losung zu Ubung 7.3.6.1.

1 $ git commit --amend -m "new text2 and added it to main"
[other_cool_stuff 9c087cd] new text2 and added it to main
Date: Thu Oct 26 14:38:02 2023 +0200
2 files changed, 8 insertions(+), 3 deletions(-)

Cédigo fuente 16: Losung zu Ubung 7.3.6.2.

The command needed to add the change to the last commit is shown in Lis-
ting 15.

2. Nachdem Sie die Anderung vorgenommen haben, stellen Sie fest, dass die
Commit-Nachricht nicht alle Anderungen widerspiegelt. Sie mochten der Na-
chricht hinzufiigen, dass die neue Funktion auch in main.py aufgenommen
wurde.

The command needed to change the commit message of the last commit is
shown in Listing 16.

63 losdeldgiim.github.io

https://losdeldgiim.github.io/

1

App. Management 7.4. Continuous Integration

$ git bisect start

status: waiting for both good and bad commits

$ git bisect bad

status: waiting for good commit(s), bad commit known

$ git bisect good b6763c2

Bisecting: 184 revisions left to test after this (roughly 8 steps)
[45d0499cacc9082b426292f53b63e24f5cb87ale] Commit 215

Cédigo fuente 17: Starting the bisecting process

7.4. Continuous Integration

Zu den folgenden Aufgaben finden Sie hier ein zip-Datei mit den notwendigen
Ressourcen.

Ejercicio 7.4.1. Thre Tests zeigen, dass eine Funktion nicht mehr korrekt funktio-
niert. Identifizieren Sie den Commit, ab dem der Fehler eingefiihrt wurde.

As we can see when executing get_pi.py, the output is not correct. We will use
git bisect to find the commit that introduced the error. First of all we need to
detect a commit where the output is correct (a good commit). We will check out to
some of the first commits and execute the script to check that the output is correct.
In this case, commit b6763c2 is a good commit. Then, the Listing 17 shows how
to start the bisecting process by marking the current commit as bad and the good
commit as good.

At this point, Git has automatically checked out to a commit in the middle
of the history (in this case, commit 45d0499). The checking process is shown in
the Listing 18. After the checking process, we can see that the first bad commit is
46917b5 (commit 173), which is the commit that introduced the error.

Finally, we can see that the first bad commit is 46917b5 (commit 173), which is
the commit that introduced the error. In the Listing 19 we can see the details of the
bad commit.

The checking process can be automated using the git bisect run <script>
command, where <script> is the shown in the Listing 20. That way, Git will au-
tomatically execute the script in each commit and determine if it is good or bad
based on the exit code of the script (0 for good, 1 for bad), simplifying the bisecting
process.

Ejercicio 7.4.2. Fiir die Echtzeit-Messaging-App der ,,Universitat der Zukunft
soll eine CI/CD-Pipeline aufgebaut werden.

1. Welche Schritte sollte die Pipeline umfassen und welche Werkzeuge koénnte
man dafiir nutzen?

2. In Section 7.2 haben Sie bereits Git-Hooks kennen gelernt. Wie konnten Sie
diese in einer CI- bzw. CD-Pipeline benutzen?

3. Welche Branching-Strategie fiir die Echtzeit-Messaging-App wiirden Sie vors-
chlagen?

64 losdeldgiim.github.io

https://github.com/LosDelDGIIM/LosDelDGIIM.github.io/blob/main/subjects/Erasmus-DUE/Application%20Management/Blatt_Material/blatt04_material.zip
https://losdeldgiim.github.io/

10

15

20

25

App. Management 7.4. Continuous Integration

$ python3 get_pi.py
2.77
$ git bisect bad
Bisecting: 91 revisions left to test after this (roughly 7 steps)
[0Oed8e90afead5388b98e7caar4475cf1da7ba614] Commit 123
$ python3 get_pi.py
3.14
$ git bisect good
Bisecting: 45 revisions left to test after this (roughly 6 steps)
[634ee36e8acfale8112b21c559¢cc4e390455113d] Commit 169
$... # We continue the process by checking out to the next commit suggested
by Git and exzecuting the script to check the output. We repeat this process
unttl we find the first bad commit.
$ git bisect bad
Bisecting: O revisions left to test after this (roughly O steps)
[53b336b7d7cbfc0069951d7cf1988b3c44c603f9] Commit 172
$ python3 get_pi.py
3.14
$ git bisect good
46917b552£8df592e2d86becbbaba26d7belda36 is the first bad commit
commit 46917b552f8df592e2d86becbbaba26d7belda36
Author: Alice <alice@example.com>
Date: Mon Dec 9 18:25:28 2024 +0100

Commit 173

get_pi.py | 2 +-
1 file changed, 1 insertion(+), 1 deletion(-)

Cédigo fuente 18: Bisecting process

65 losdeldgiim.github.io

https://losdeldgiim.github.io/

App. Management 7.4. Continuous Integration

1 § git bisect reset
Previous HEAD position was 53b336b Commit 172
Switched to branch 'master'
$ git show 46917b5

5 commit 46917b552f8df592e2d86becbbaba26d7belda36
Author: Alice <alice@example.com>
Date: Mon Dec 9 18:25:28 2024 +0100

Commit 173
10
diff --git a/get_pi.py b/get_pi.py
index 3325ae8..9b12bce 100644
--- a/get_pi.py
+++ b/get_pi.py
15 @@ -5,7 +5,7 @@ def berechne_pi(n_terms):
for i in range(2, 2 + 2 * n_terms, 2):
term = 4.0 / (4 *x (4 + 1) *x (i + 2))

if add:
- pi += term # Berechnungsschritt 172
20 + pi -= term # Berechnungsschritt 172
else:

pi —= term # Berechnungsschritt 172
add = not add

Cédigo fuente 19: Details of the bad commit

1 #!/bin/bash
RESULT=$ (python3 get_pi.py)
5 if ["$RESULT" == "3.14"]; then
exit O
else

exit 1
fi

Codigo fuente 20: Script to automate the bisecting process

66 losdeldgiim.github.io

https://losdeldgiim.github.io/

App. Management 7.4. Continuous Integration

4. Welche Unit-, Component- und Acceptance-Tests wiirden zur Messaging-App
passen?

67 losdeldgiim.github.io

https://losdeldgiim.github.io/

App. Management 7.5. Docker

FROM ubuntu:22.04

COPY server_linux_x64 /server
RUN chmod +x /server

CMD ["/server"]

EXPOSE 8080

Cédigo fuente 21: Dockerfile used to create the Docker image for the second instance
of the server.

$ docker build -t server .

...

=> => naming to docker.io/library/server
0.0s

$ docker run -p 8081:8080 server

Starting Webserver at: localhost:8080

Cédigo fuente 22: Terminal commands to build the Docker image and run the Docker
container for the second instance of the server.

7.5. Docker

Zu den folgenden Aufgaben finden Sie hier ein zip-Datei mit den notwendigen
Ressourcen.

Ejercicio 7.5.1. Das zip-Datei enthélt ausfithrbare Dateien fiir verschiedene Archi-
tekturen. Wenn Sie die Ubuntu-VM nutzen, ist die Datei server_linux x86_64 die
richtige. Alle anderen Dateien sind ungetestet und nicht garantiert zu funktionieren.
Sie konnen die Datei mit $./server_linux x86_64 ausfithren und den Webserver
im Browser unter localhost:8080 erreichen. Ihre Aufgabe ist es, zwei Instanzen
des Webservers parallel auf Threm System auszufiithren.

The problem here is that the server always run on port 8080. The first instance
will start without problems, but the second one will fail because the port is already
in use. To solve this problem, Docker will be used to create an isolated environment
for the second instance of the server, allowing it to run on the same port without
conflicts. The Dockerfile used is shown in the Listing 21. The code executed in the
terminal to build and run the Docker container is shown in the Listing 22.

Ejercicio 7.5.2. Sie sind Teil des Entwicklerteams fiir die Echtzeit-Messaging-App
der “Universitdat der Zukunft”. Da Ihr Team in einer heterogenen Umgebung ar-
beitet und sicherstellen muss, dass das entwickelte Python-Skript unter verschiede-
nen Python-Versionen ordnungsgeméfl ausgefiihrt wird, ist es Ihre Aufgabe, Docker-
Container fiir diese Tests zu erstellen. Ihr Manager hat Sie gebeten, zu testen, ob
die App mit allen offiziell unterstiitzten Python-Versionen ausfithrbar ist.

In order to accomplish this task, different Docker images for each Python version
will be created, and they will be used to run the Python script in an isolated envi-
ronment. In order to automate this process, the Dockerfile with recieve the Python
version as a build argument, and a script will be created to build and run the Docker

68 losdeldgiim.github.io

https://github.com/LosDelDGIIM/LosDelDGIIM.github.io/blob/main/subjects/Erasmus-DUE/Application%20Management/Blatt_Material/blatt05_material.zip
https://losdeldgiim.github.io/

1

10

App. Management 7.5. Docker

Slim -> Optimized image with only the necessary dependencies to Tun
Python

ARG PYTHON_VERSION=3.12

FROM python:${PYTHON_VERSION}-slim
WORKDIR /app

COPY prime.py .

ENTRYPOINT ["python", "prime.py"]
CMD ["512"]

Cédigo fuente 23: Dockerfile used to create the Docker images for each Python
version.

#!/bin/bash
VERSIONS=("3.9" "3.10" "3.11" "3.12" "3.13")

for VER in "${VERSIONS[@]}"; do
eChO N "
echo "Testing Python version: $VER"
eChO S e e e e e S e e e e e e e e e e e e e e e "

docker build --build-arg PYTHON_VERSION=$VER -t "test-python-$VER"
-q
docker run --rm "test-python-$VER" 512

echo -e "Test completed for $VER\n"
done

Codigo fuente 24: Script used to automate the building and running of Docker
containers for each Python version.

containers for each Python version. The Dockerfile used is shown in the Listing 23.
The script used to automate the process is shown in the Listing 24. The executed
commands in the terminal to run the script are shown in the Listing 25.

Ejercicio 7.5.3.

1. Was ist Docker und wie unterscheidet es sich von Hypervisor-basierten Vir-
tualisierungstechnologien?

2. Erlautern Sie den Begriff “Container” im Kontext von Docker.

3. Wie kann Docker in einer Continuous-Integration/Continuous-Deployment-
(CI/CD)-Pipeline eingesetzt werden?

4. Erlautern Sie den Begriff “Docker Registry” und erlautern Sie, warum er fiir
CI/CD wichtig ist.

69 losdeldgiim.github.io

https://losdeldgiim.github.io/

1

10

15

App. Management 7.5. Docker

$ chmod +x versions.sh ; ./versions.sh
$./versions.sh

sha256:4085d618dbeb1044b7eabcc8caall805c27b681£5c31374931ddc9112eb0£fb32
Traceback (most recent call last):
File "/app/prime.py", line 4, in <module>
from typing import Self
ImportError: cannot import name 'Self' from 'typing'
(/usr/local/lib/python3.9/typing.py)
Test completed for 3.9

sha256:7a4f73d714b81124ea19168bdedf6£39922aa0b679bbc5565e64e£8d09f0e885
Found prime number:
8609485375174705614708523748725808733598995700938607245574 . . . 188797
Test completed for 3.13

Cédigo fuente 25: Terminal commands to run the script that tests the Python script
with different Python versions using Docker containers.

Ejercicio 7.5.4. In dieser Aufgabe lernen Sie einen der Grundmechanismen der
historischen Containerisolierung kennen. Dazu verwenden Sie das UNIX-Werkzeug
chroot, das den sichtbaren Root-Ordner eines Prozesses éndert. In der zip-Datei
finden Sie die Datei alpine-rootfs.tar. Diese Datei enthélt ein minimales Linux-
Dateisystem, das urspriinglich aus einem Docker-Container (alpine) exportiert wur-

de.
1. Entpacken Sie das Root-Dateisystem in ein Verzeichnis Threr Wahl.

2. Starten Sie eine Shell innerhalb dieses Dateisystems mithilfe von chroot.

After unzipping the root filesystem, the command shown in the Listing 26 is
used to start a shell within the chroot environment.

3. Untersuchen Sie das Verhalten innerhalb der Umgebung;:

» Fihren Sie Befehle wie 1s, pwd und ps aus. Was fallt [hnen auf?

As observed in the Listing 26, the root directory is now the chroot envi-
ronment, and given that there are no other processes running within the
chroot, the ps command shows no processes.

» Starten Sie in einem separaten Terminal ps -ef aus. Konnen Sie den
Prozess aus der chroot-Umgebung sehen?

Yes, the process running within the chroot environment can be seen from
the host system using the ps -ef command.

70 losdeldgiim.github.io

https://losdeldgiim.github.io/

10

App. Management 7.5. Docker

$ sudo chroot . /bin/sh

/ # ls

bin etc 1ib mnt proc run STV tmp var
dev home media opt root sbin sys usr

/ # pwd

/

/ # ps

PID USER TIME COMMAND

/#

Cédigo fuente 26: Command used to start a shell within the chroot environment.

#!/bin/bash

ROOTFS="$HOME/alpine-rootfs"
ARCHIVE="alpine-rootfs.tar"

mkdir -p $ROOTFS
tar -xf $ARCHIVE -C $ROOTFS

echo "Entering chroot environment..."
sudo chroot $ROO0TFS /bin/sh -c "echo 'Inside chroot: '; pwd; ls; exec
/bin/sh"

Cédigo fuente 27: Script used to automate the process of unzipping the root filesys-
tem and starting a shell within the chroot environment.

4. Schreiben Sie ein kleines Programm/Script, das die Schritte des Entpackens
sowie das Starten eines Befehls in der chroot-Umgebung automatisiert.

The script used to automate the process is shown in the Listing 27.

5. Begriinden Sie, warum chroot keine vollstandige Isolation bietet.

This command only changes the apparent root directory for the process, but it
does not provide isolation in terms of processes, network, or users. The process
running within the chroot environment can still see all the processes running
in the host system, no network isolation is provided, and if the process has
root privileges, it can escape the jail.

71 losdeldgiim.github.io

https://losdeldgiim.github.io/

App. Management 7.6. Deployment

7.6.

Deployment

Ejercicio 7.6.1. Die Echtzeit-Messaging-App fir den Campus der “Universitat der
Zukunft” soll bereitgestellt werden. Die App soll zundchst auf Android-Telefonen
verfligbar gemacht werden. Es gibt auflerdem einen Server, der Anfragen der App
verarbeitet und Nachrichten speichert.

1.

2.

10.

Wie sollte man das erste Deployment der App gestalten?

Eine neue Version der App ist fertig entwickelt. Lohnt sich ein Zero-Downtime-
Release?

. Was sollte man bei diesem Release beachten?
. Wann sind Blue-Green Deployments sinnvoll?
. Wann sind Canary Releases sinnvoll?

. Was passiert in unserer App wahrend der Commit Stage?

Was passiert in der Automated Acceptance Stage?

. Was passiert in der manual Test Stage?

. Was passiert in der Release Stage?

Wiirden Sie eher Continuous Deployment oder Continuous Delivery fiir das
Projekt nutzen? Argumentieren Sie.

Ejercicio 7.6.2.

1.

Warum lohnt es sich, Container in der Entwicklung und in der Deployment-
Pipeline zu verwenden?

. Welche Eigenschaften von cgroups sind bei der Containerization niitzlich?

. In ihrer Ubuntu-VM sollten sie unter /sys/fs/cgroup/system.slice/docker

die Dateien finden die die “docker.service”-cgroup definieren. Schauen Sie sich
cpu.max und memory.max an. Was sagen sie iiber diese cgroup aus?

In the Listing 28 you can see an example of the content of these files. In this
case, the cgroup is configured to use as much CPU and memory as needed,
but it could be configured to use only a percentage of the CPU or a fixed
amount of memory.

. Welche Eigenschaften haben Namespaces, die bei der Containerisierung niitz-

lich sind?

. Welche Eigenschaften hat chroot bzw. pivot_root, die bei der Containeriza-

tion nutzlich ist, und was unterscheidet die beiden?

. Was unterscheidet Containerization von Virtual Machines?

72 losdeldgiim.github.io

.service

https://losdeldgiim.github.io/

App. Management 7.6. Deployment

1 $ cat /sys/fs/cgroup/system.slice/docker.service/cpu.max

max 100000
$ cat /sys/fs/cgroup/system.slice/docker.service/memory.max

max

Codigo fuente 28: Example of the content of the cpu.max and memory.max files of a

cgroup.

73 losdeldgiim.github.io

https://losdeldgiim.github.io/

App. Management 7.7. Secure Deployment

7.7. Secure Deployment

Ejercicio 7.7.1. Die Echtzeit-Messaging-App fir den Campus der “Universitat der
Zukunft” soll regelméflig aktualisiert werden, dabei aber sichere Deployments ga-
rantiert werden.

1. Erklaren Sie kurz die Begriffe hermetic build, reproducible build und verifiable
build.

2. Nennen Sie zwei typische Fallstricke, die reproducible Builds verhindern.

Ejercicio 7.7.2. Die Universitat iiberlegt, eine eigene CA fiir interne Services ein-
zurichten.

1. Erklaren Sie, wofiir eine CA benotigt wird, und welche Rolle Zertifikate beim
sicheren Schliisselaustausch spielen.

2. Skizzieren Sie den Ausstellungsprozess eines Zertifikats.

3. Nennen Sie drei Risiken beim Betrieb einer CA und mégliche Gegenmafinah-
men.

Ejercicio 7.7.3. Angenommen, ein Angreifer hat Zugriff auf einen CI-Runner er-
langt, der Builds ausfiihrt.

1. Welche zwei Angriffe sind dadurch besonders naheliegend?
2. Welche Sofortmafinahme (erste 24h) wiirden Sie einleiten?

Ejercicio 7.7.4. Schauen Sie sich SLSA an. Worum handelt es sich dabei?

74 losdeldgiim.github.io

https://slsa.dev/
https://losdeldgiim.github.io/

App. Management 7.8. Secure Deployment 2

7.8. Secure Deployment 2

Ejercicio 7.8.1. Erldautern Sie, inwiefern die folgenden Mafinahmen vor einem Be-
nign Insider oder einem Malicious Adversary absichern. Gegen welche der beiden
Arten von Akteuren sind die Mafinahmen effektiver und warum?

1. Code Reviews
2. Geheimnisse schiitzen (durch Key-Management-Systeme, Zugriffskontrollen etc.)
3. Automatisierung der CI/CD-Pipeline
4. Verifiable Builds
Ejercicio 7.8.2.

1. Welche Daten sollten in einer Binary Provenance fiir unsere Echtzeit-Messaging-
App des Campus der “Universitat der Zukunft” enthalten sein?

2. Welche Verbindung besteht zwischen Hermetic, Reproducible und Verifiable
Builds und Binary Provenance?

75 losdeldgiim.github.io

https://losdeldgiim.github.io/

App. Management 7.9. Secure Development

7.9. Secure Development

Ejercicio 7.9.1.
1. Erlautern Sie, was ein Security Champion ist.
2. Welche Vor- und Nachteile hat dieses Konzept?

Ejercicio 7.9.2. Nehmen Sie wieder an, Sie seien Entwickler im Team der Echtzeit-
Messaging-App der “Universitat der Zukunft”. Thr Team denkt tiber das Thema
Sicherheit nach und mochte das OWASP SAMM einfiihren.

1. Schauen Sie sich das OWASP SAMM an.

2. Uberlegen Sie sich verschiedene MaBnahmen auf unterschiedlichen Ebenen, um
eine sichere Benutzerauthentifizierung sicherzustellen. (Mogliche Hilfestellung
kann das OWASP CheatSheet bieten.)

3. Uberlegen Sie, zu welcher Doméane des OWASP SAMMs die Mafinahmen passen
und inwiefern Sie den Reifegrad verbessern konnen.

76 losdeldgiim.github.io

https://owaspsamm.org/model/
https://cheatsheetseries.owasp.org/index.html
https://losdeldgiim.github.io/

App. Management 7.10. Fuzzing & 73

1 def func(a, b):
x =0
y=0
if a > 0:

(¢}
o]

if b
y
assert x +y !=3

1
0:
2

Cédigo fuente 29: Beispielcode fiir Ubung 7.10.4

7.10. Fuzzing & Z3

Ejercicio 7.10.1. Schauen Sie sich das Fuzzingbook an. Sie konnen den benétigten
Code mittels $ pip install fuzzingbook installieren. Beschreiben Sie die folgen-
den Ansatze und erkldren Sie die Unterschiede sowie die Vor- und Nachteile.

1. Random Fuzzing
2. Mutation Fuzzing
3. Coverage-guided Fuzzing
Ejercicio 7.10.2.
1. Schauen Sie sich an, welche SMT-Solver es gibt.

2. Nennen Sie einige Anwendungsgebiete, in denen SMT-Solver eingesetzt werden
konnen.

3. Welche Herausforderungen konnen bei der Anwendung von SMT-Solvern auf-
treten und wie konnen sie bewéltigt werden?

4. Wie konnen SMT-Solver zur Sicherheitsanalyse von Softwareanwendungen bei-
tragen?

Ejercicio 7.10.3.
1. Warum sind AddressSanitizer (ASan) nicht fiir den Produktivbetrieb geeignet?
2. Was sind Redzones?
3. Warum wird Shadow Memory bendtigt?

Ejercicio 7.10.4. Schauen Sie sich das folgende Python-Programm an (Abbil-
dung 29).

1. Zeichnen Sie den Kontrollflussgraphen.
The graphic can be seen in the Figure 7.9.

2. Leite alle moglichen Pfadbedingungen her.

This can also be seen in the Figure 7.9, where the path constraints are shown
in green boxes.

7 losdeldgiim.github.io

https://www.fuzzingbook.org
https://losdeldgiim.github.io/

App. Management 7.10. Fuzzing & 73

z=1 y=2 [mzl,y:()} {w=0,y=2} £$:0,y20}

a>0Ab== [a>0/\b7é0} {aéO/\b:: } {aé()/\b#()}
v

AssertionErrort

7 AE Y == &

Figura 7.9: Kontrollflussgraph fiir das Beispielprogramm

78 losdeldgiim.github.io

https://losdeldgiim.github.io/

App. Management 7.10. Fuzzing & 73

3. Gibt es eine Belegung von a und b, die das Assert verletzt? Wenn ja: Welche?

As shown in Figure 7.9, there is a path that leads to the assertion failure,
which is the path where a > 0 and b == 0. Therefore, any values of a and
b that satisfy these conditions will violate the assertion. For example, a = 1
and b = 0 would lead to the assertion failure.

79 losdeldgiim.github.io

https://losdeldgiim.github.io/

App. Management 7.11. Fuzzing & 73 2

7.11. Fuzzing & 73 2

Zu den folgenden Aufgaben finden Sie hier ein zip-Datei mit den notwendigen
Ressourcen. Sie miissen auch ein paar Python-Pakete installieren, um die Aufgaben
zu l6sen.

1. Offnen Sie das Terminal (ctrl + Alt + T)

2. Installieren Sie den Package Installer for Python
($ sudo apt install python3-pip python3-venv)

3. Erstellen Sie ein neues Virtual Environment
($ python3 -m venv ./venv)

4. Konfigurieren Sie die aktuelle Shell, damit sie das venv verwendet.
($ source ./venv/bin/activate)

5. Installieren Sie z3
($ pip3 install z3-solver)

6. Atheris konnen Sie in einem Ubuntu 24.04 Container installieren
($ pip3 install atheris)

Ejercicio 7.11.1.

1. Nutzen Sie atheris und instrumentieren Sie die validate-Funktion in fuzz. py.
The new code should look like Listing 30.

2. Zeichnen Sie einen Kontrollflussgraphen fiir die Funktion. Nutzen Sie als Kno-
tennamen die Zeilen-nummern.

The control flow graph for the validate function is shown in Figure 7.10.

3. Bestimmen Sie die prozentuale Coverage, wenn der Code mit [246,63,103,121]
aufgerufen wird. Markieren Sie aulerdem die erreichten Knoten im Kontroll-
flussgraphen.

4. Instrumentieren Sie die validate-Funktion in fuzz2.py

The new code should look like Listing 31.

5. Suchen Sie mittels z3 nach einer Losung fiir validate.

The solution for the validate function is shown in Listing 32. It should be
noted that the code has been “translated” so that z3 can know the constraints
that need to be satisfied.

Ejercicio 7.11.2. Manche Programmierer nutzen Bit-Tricks, um auf spezifische
Hardware zu optimieren. Nutzen Sie z3, um zu zeigen, dass die Tricks auf einem
64-Bit-System dasselbe Verhalten haben wie eine naive Implementierung.

1. Tauschen zweier Variablen mit X0OR

The code for swapping two variables using XOR is shown in Listing 33, while
the output of the code is shown in Listing 34.

80 losdeldgiim.github.io

https://github.com/LosDelDGIIM/LosDelDGIIM.github.io/blob/main/subjects/Erasmus-DUE/Application%20Management/Blatt_Material/blatt11_material.zip
https://losdeldgiim.github.io/

10

15

20

25

App. Management

#!./venv/bin/python3

from typing import List
import atheris
import sys

PASSCODE = [getrandombits(8) for _ in range(4)]
PASSCODE = [64, 63, 121, 119]

def validate(data: List[int]):
if len(data) !'= 4:
return

if PASSCODE[0] == datal[0]:
if PASSCODE[1] == datal1]:
if PASSCODE[2] == data[2]:
if PASSCODE[3] == datal3]:
raise RuntimeError("passcode match")
return

atheris.instrument_func(validate)
atheris.Setup(sys.argv, validate)
atheris.Fuzz()

Codigo fuente 30: Fuzzing mit Atheris

81 losdeldgiim.github.io

7.11. Fuzzing & 73 2

https://losdeldgiim.github.io/

App. Management 7.11. Fuzzing & 73 2

len(data) !=4

15:
PASSCODE[0] == datal[0]

16:
PASSCODE[1] == datal[1]

17:
PASSCODE[2] == datal[2]

18:
PASSCODE[3] == datal[3]

RuntimeError:
passcode match

Figura 7.10: Kontrollflussgraph fiir das validate-Programm

82 losdeldgiim.github.io

https://losdeldgiim.github.io/

App. Management 7.11. Fuzzing & 73 2

1 #!./venv/bin/python3
from typing import List
import atheris
import sys

PASSCODE = [getrandombits(8) for _ in range(4)]
PASSCODE = [64, 63, 121, 119]

10 def validate(data: List[int]):
if len(data) !'= 4:
return

if PASSCODE[0] == datal[0]:
15 if PASSCODE[1] 7 3 == datal[il]:
if PASSCODE[2] * 2 + 4 == datal[2]:
if PASSCODE[3] + PASSCODE[0] == datal[3]:
raise RuntimeError("passcode match")

return
20

atheris.instrument_func(validate)
atheris.Setup(sys.argv, validate)
atheris.Fuzz()

Cédigo fuente 31: Fuzzing mit Atheris (verdnderte validate-Funktion)

83 losdeldgiim.github.io

https://losdeldgiim.github.io/

10

15

20

10

15

20

App. Management 7.11. Fuzzing & 73 2

#!./venv/bin/python3
from typing import List
import z3

PASSCODE = [getrandombits(8) for _ in range(4)]
PASSCODE = [64, 63, 121, 119]

solver = z3.Solver()
data = [23.Int(f"data_{i}") for i in range(4)]

solver.add(len(data) == 4)

solver.add (PASSCODE[0] == datal0])
solver.add(PASSCODE[1] 7% 3 == datall])
solver.add (PASSCODE[2] * 2 + 4 == datal[2])
solver.add (PASSCODE[3] + PASSCODE[0] == datal[3])

if solver.check() == z3.sat:
model = solver.model()
solution = [model[datal[il].as_long() for i in range(4)]
print("Solution found:", solution)
GILEE]
print("No solution found.")

Codigo fuente 32: Losungssuche mit Z3

#!./venv/bin/python3
import z3

X, y = z3.BitVecs('x y', 64)
x0, yO = x, y

<
I
el
<

solver = z3.Solver()
solver.add(z3.Not(z3.And(x == yO, y == x0)))

if solver.check() == z3.sat:

model = solver.model()

print ("Counterexample found:", model)
elif solver.check() == z3.unsat:

print ("No counterexample found, the property holds.")
else:

print("Solver returned unknown result.")

Cédigo fuente 33: Tauschen zweier Variablen mit XOR

84 losdeldgiim.github.io

https://losdeldgiim.github.io/

1

10

15

20

1

App. Management 7.11.

Fuzzing & 7.3 2

$./test_xor.py
No counterexample found, the property holds.

Cédigo fuente 34: Output des XOR-Codes

#!./venv/bin/python3
import z3

X, y = z3.BitVecs('x y', 64)
x0, yO = x, y

X =X -y
Xty

<
Il

X=y X

solver = z3.Solver()
solver.add(z3.Not(z3.And(x == y0O, y == x0)))

if solver.check() == z3.sat:

model = solver.model()

print ("Counterexample found:", model)
elif solver.check() == z3.unsat:

print ("No counterexample found, the property holds.")
else:

print("Solver returned unknown result.")

Codigo fuente 35: Tauschen zweier Variablen mit Subtraktion und Addition

2. Tauschen zweier Variablen mit Subtraktion und Addition

The code for swapping two variables using subtraction and addition is shown
in Listing 35, while the output of the code is shown in Listing 36.

3. Die Bitreihenfolge innerhalb eines Bytes umkehren

Ejercicio 7.11.3. Nutzen Sie z3, um generische Sudokus zu l6sen.

Observacion. Sollten Sie nicht weiterkommen, kann eine Internetsuche weiterhelfen.

The code for solving generic Sudokus using Z3 is available in this repository.

Ejercicio 7.11.4. Ein Freund von Thnen behauptet, dass er sein eigenes sicheres
Krypto-System entwickelt hat. Zum System gehoren zwei Komponenten: eine asym-

$./test_add_sub.py
No counterexample found, the property holds.

Cédigo fuente 36: Output des Subtraktion-Addition-Codes

85 losdeldgiim.github.io

https://github.com/ppmx/sudoku-solver/tree/master
https://losdeldgiim.github.io/

App. Management 7.11. Fuzzing & 73 2

metrische und eine symmetrische Chiffre. Zeigen Sie, dass beide Verfahren nicht
sicher sind.

86 losdeldgiim.github.io

https://losdeldgiim.github.io/

App. Management 7.12. SLA

7.12. SLA

Ejercicio 7.12.1. Beschreiben Sie, worum es sich bei MTTF, MTTR und MTBF
handelt, und stellen Sie die Unterschiede dar.

They are described in Section 1.3.1.3.

Ejercicio 7.12.2. Nehmen Sie an, Sie sind ein Teammitglied des Netzwerkzentrums
der “Universitat der Zukunft”. Die Echtzeit-Messaging-App soll von Thnen gehostet
werden und die Rektorin méchte, dass das System hochverfiigbar (VK3) ist. Erstellen
Sie eine Liste moglicher Prozesse, die die Ausfallzeit minimieren.

87 losdeldgiim.github.io

https://losdeldgiim.github.io/

	Application Lifecycle Management (ALM)
	Application Lifecycle Management (ALM)
	Software Development Lifecycle (SDLC)
	Waterfall Model
	Agile Model

	SLA

	Version Control System (VCS)
	Types of VCS
	Git
	Git Bisect
	Git LSF
	Branching
	Branch Integration
	Git Hooks

	Distributed Git
	Remote Repositories
	Collaboration Workflows

	Git Internals
	Objects
	Git Filesystem-Check

	Build Engineering und Continuous Integration
	Build Engineering
	GitHub Actions

	Continuous Integration (CI)
	CI and Branches
	Testing

	Deployment Strategies and DevOps
	Deployment Strategies
	Non-Zero Downtime Releases
	Zero-Downtime Releases
	Emergency fixes

	Deployment Pipeline
	Guidelines for a Deployment Pipeline
	Phases of a Deployment Pipeline
	Deployment of User-Installed Software
	Modern Deployment Practices

	Continuous Deployment (CD)
	Continuous Delivery

	DevOps
	RACI Method

	Deployment with Containers Technology
	Containers VS Virtual Machines
	Isolation Measures
	Docker

	Secure Deployment and CA Case Study
	Binary Provenance
	Certificate Authorities (CA)
	CA Creation

	Human Factors in Secure Deployment
	Vulnerability Management
	Security Champion

	Software Testing
	Test Types
	Unit Tests
	Acceptance Tests

	Program Analysis
	Adress Sanitizer

	The Quest for Coverage
	Symbolic Execution
	Fuzzing

	Übungen
	Application Lifecycle Management (ALM)
	Version Control System (VCS)
	Distributed Git und Internals
	Continuous Integration
	Docker
	Deployment
	Secure Deployment
	Secure Deployment 2
	Secure Development
	Fuzzing & Z3
	Fuzzing & Z3 2
	SLA

